Math, asked by shca83, 3 months ago

Simplify : (54x)^1/3 - (2x)^1/3 / 2^1/3
answer this question only if you know the answer or else get reported.​

Answers

Answered by keepaadiwal234
0

Answer:

86 answer please brainliest me

Answered by pulakmath007
3

SOLUTION

TO SIMPLIFY

 \displaystyle \sf{ \frac{ {(54x)}^{ \frac{1}{3} } - {(2x)}^{ \frac{1}{3} } }{{2}^{ \frac{1}{3} }} }

EVALUATION

 \displaystyle \sf{ \frac{ {(54x)}^{ \frac{1}{3} } - {(2x)}^{ \frac{1}{3} } }{{2}^{ \frac{1}{3} }} }

 \displaystyle \sf{  = \frac{ {(54x)}^{ \frac{1}{3}  } }{{2}^{ \frac{1}{3} }} -  \frac{  {(2x)}^{ \frac{1}{3} } }{{2}^{ \frac{1}{3} }}}

 \displaystyle \sf{  =  { \bigg( \frac{54x}{2}  \bigg)}^{ \frac{1}{3} } -  { \bigg( \frac{2x}{2}  \bigg)}^{ \frac{1}{3} }}

 \displaystyle \sf{  =  { (27x)}^{ \frac{1}{3} } -  { (x)}^{ \frac{1}{3} }}

 \displaystyle \sf{  =    { (27)}^{ \frac{1}{3} } { (x)}^{ \frac{1}{3} } -  { (x)}^{ \frac{1}{3} }}

 \displaystyle \sf{  =    { ( {3}^{3} )}^{ \frac{1}{3} } { (x)}^{ \frac{1}{3} } -  { (x)}^{ \frac{1}{3} }}

 \displaystyle \sf{  =    3{ (x)}^{ \frac{1}{3} } -  { (x)}^{ \frac{1}{3} }}

 \displaystyle \sf{  =    2{ (x)}^{ \frac{1}{3} }}

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If 2^x+3 + 2^x – 4 =129, then find the value of x.

https://brainly.in/question/23183505

2. Using law of exponents, simplify (5²)³÷5³

https://brainly.in/question/36250730

Similar questions