Math, asked by SumedhaPant, 1 month ago

Simplify :
(6√2/√3+√2) - (4√3/√6+√2) + (2√6/ √2+√3)​

Attachments:

Answers

Answered by akeertana503
5

\Huge{\textbf{\textsf{\color{navy}{An}{\purple{sW}{\pink{eR{\color{pink}{:-}}}}}}}}

please see the attachment

hope so ita clear.!!

\huge\sf\underline\red{answered\:by\:KIMU}

Attachments:
Answered by mathdude500
3

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:\dfrac{6 \sqrt{2} }{  \sqrt{3} +  \sqrt{6} }  - \dfrac{4 \sqrt{3} }{ \sqrt{6}  +  \sqrt{2} }  + \dfrac{2 \sqrt{6} }{ \sqrt{2}  +  \sqrt{3} }

Consider,

 \red{\rm :\longmapsto\:\dfrac{6 \sqrt{2} }{  \sqrt{3  } +  \sqrt{6} }  }

can be rewritten as

 \rm \:  =  \: \dfrac{6 \sqrt{2} }{ \sqrt{6}  +  \sqrt{3} }

On rationalizing the denominator, we get

 \rm \:  =  \: \dfrac{6 \sqrt{2} }{ \sqrt{6}  +  \sqrt{3} }  \times \dfrac{ \sqrt{6}  -  \sqrt{3} }{ \sqrt{6}  -  \sqrt{3} }

We know that,

\red{\boxed{ \rm{(x + y)(x - y) =  {x}^{2} -  {y}^{2}  }}}

Using this identity, we get

\rm \:  =  \: \dfrac{6( \sqrt{12}  -  \sqrt{6} )}{6 - 3}

\rm \:  =  \: \dfrac{6( \sqrt{2 \times 2 \times 3}  -  \sqrt{6} )}{3}

\rm \:  =  \: 2(2 \sqrt{3} -  \sqrt{6)}

\rm \:  =  \: 4 \sqrt{3} - 2 \sqrt{6}

Hence,

 \red{\rm :\longmapsto\:\dfrac{6 \sqrt{2} }{  \sqrt{3  } +  \sqrt{6} } = 4 \sqrt{3}  - 2 \sqrt{6} }

Consider,

 \red{\rm :\longmapsto\:\dfrac{4 \sqrt{3} }{  \sqrt{6} +  \sqrt{2} }  }

On rationalizing the denominator, we get

\rm \:  =  \: \dfrac{4 \sqrt{3} }{ \sqrt{6}  +  \sqrt{2} }  \times \dfrac{ \sqrt{6}  -  \sqrt{2} }{ \sqrt{6} -  \sqrt{2}  }

\rm \:  =  \: \dfrac{4( \sqrt{18}  -  \sqrt{6)} }{6 - 2}

\rm \:  =  \: \dfrac{4( \sqrt{3 \times 3 \times 2}  -  \sqrt{6)} }{4}

\rm \:  =  \: 3 \sqrt{2} -  \sqrt{6}

Hence,

 \red{\rm :\longmapsto\:\dfrac{4 \sqrt{3} }{  \sqrt{6} +  \sqrt{2} }   = 3 \sqrt{2}  -  \sqrt{6} }

Consider,

 \red{\rm :\longmapsto\:\dfrac{2 \sqrt{6} }{  \sqrt{2 } +  \sqrt{3} }  }

can be rewritten as

\rm \:  =  \: \dfrac{2 \sqrt{6} }{ \sqrt{3}  +  \sqrt{2} }

On rationalizing the denominator, we get

\rm \:  =  \: \dfrac{2 \sqrt{6} }{ \sqrt{3}  +  \sqrt{2} }  \times \dfrac{ \sqrt{3}  -  \sqrt{2} }{ \sqrt{3}  -  \sqrt{2} }

\rm \:  =  \: \dfrac{2( \sqrt{18} -  \sqrt{12})}{3 - 2}

\rm \:  =  \: \dfrac{2( \sqrt{3 \times 3 \times 2} -  \sqrt{2 \times 2 \times 3})}{1}

\rm \:  =  \: 2(3 \sqrt{2} - 2 \sqrt{3})

\rm \:  =  \: 6 \sqrt{2} - 4 \sqrt{3}

Hence,

 \red{\rm :\longmapsto\:\dfrac{2 \sqrt{6} }{  \sqrt{2 } +  \sqrt{3} }  = 6 \sqrt{2}   - 4 \sqrt{3} }

Now, Consider,

 \purple{\bf :\longmapsto\:\dfrac{6 \sqrt{2} }{  \sqrt{3} +  \sqrt{6} }  - \dfrac{4 \sqrt{3} }{ \sqrt{6}  +  \sqrt{2} }  + \dfrac{2 \sqrt{6} }{ \sqrt{2}  +  \sqrt{3} } }

\rm \:  =  \: (4 \sqrt{3} - 2 \sqrt{6}) - (3 \sqrt{2} -  \sqrt{6}) + (6 \sqrt{2} - 4 \sqrt{3})

\rm \:  =  \: 4 \sqrt{3} - 2 \sqrt{6} - 3 \sqrt{2} + \sqrt{6}+ 6 \sqrt{2} - 4 \sqrt{3}

\rm \:  =  \: 3 \sqrt{2} -  \sqrt{6}

Additional Information :-

More Identities to know:

(a + b)² = a² + 2ab + b²

(a - b)² = a² - 2ab + b²

a² - b² = (a + b)(a - b)

(a + b)² = (a - b)² + 4ab

(a - b)² = (a + b)² - 4ab

(a + b)² + (a - b)² = 2(a² + b²)

(a + b)³ = a³ + b³ + 3ab(a + b)

(a - b)³ = a³ - b³ - 3ab(a - b)

Similar questions