Simplify : [(64)^-1/6 × (216)^-1/3 × (81)^1/4]/[(512)^-1/3 × (16)^1/4 × (9)^-1/2
Answers
Step-by-step explanation:
Step 1. Express the square terms of both the numerator and the denominator as powers of their factors as required.
Step 2. Use the formula and simplify the terms.
Step 3. Express the terms of both the numerator and the denominator as proruct and power of their prime factors as required.
Step 4. Use the formula and use the formula used in Step 2.
Step 5. Use the formula to simplify.
- Since and
Step-by-step explanation:
\dfrac{(64)^{-\frac{1}{6}}\times (216)^{-\frac{1}{3}}\times (81)^{\frac{1}{4}}}{(512)^{-\frac{1}{3}}\times (16)^{\frac{1}{4}}\times (9)^{-\frac{1}{2}}}=3
(512)
−
3
1
×(16)
4
1
×(9)
−
2
1
(64)
−
6
1
×(216)
−
3
1
×(81)
4
1
=3
Step-by-step explanation:
\dfrac{(64)^{-\frac{1}{6}}\times (216)^{-\frac{1}{3}}\times (81)^{\frac{1}{4}}}{(512)^{-\frac{1}{3}}\times (16)^{\frac{1}{4}}\times (9)^{-\frac{1}{2}}}
(512)
−
3
1
×(16)
4
1
×(9)
−
2
1
(64)
−
6
1
×(216)
−
3
1
×(81)
4
1
Step 1. Express the square terms of both the numerator and the denominator as powers of their factors as required.
=\dfrac{(2^{6})^{-\frac{1}{6}}\times (6^{3})^{-\frac{1}{3}}\times (3^{4})^{\frac{1}{4}}}{(8^{3})^{-\frac{1}{3}}\times (2^{4})^{\frac{1}{4}}\times (3^{2})^{-\frac{1}{2}}}=
(8
3
)
−
3
1
×(2
4
)
4
1
×(3
2
)
−
2
1
(2
6
)
−
6
1
×(6
3
)
−
3
1
×(3
4
)
4
1
Step 2. Use the formula (a^{m})^{n}=a^{mn}(a
m
)
n
=a
mn
and simplify the terms.
=\dfrac{2^{-\frac{6}{6}}\times 6^{-\frac{3}{3}}\times 3^{\frac{4}{4}}}{8^{-\frac{3}{3}}\times 2^{\frac{4}{4}}\times 3^{-\frac{2}{2}}}=
8
−
3
3
×2
4
4
×3
−
2
2
2
−
6
6
×6
−
3
3
×3
4
4
=\dfrac{2^{-1}\times 6^{-1}\times 3^{1}}{8^{-1}\times 2^{1}\times 3^{-1}}=
8
−1
×2
1
×3
−1
2
−1
×6
−1
×3
1
Step 3. Express the terms of both the numerator and the denominator as proruct and power of their prime factors as required.
=\dfrac{2^{-1}\times (2\times 3)^{-1}\times 3^{1}}{(2^{3})^{-1}\times 2^{1}\times 3^{-1}}=
(2
3
)
−1
×2
1
×3
−1
2
−1
×(2×3)
−1
×3
1
Step 4. Use the formula (a\times b)^{m}=a^{m}\times b^{m}(a×b)
m
=a
m
×b
m
and use the formula used in Step 2.
=\dfrac{2^{-1}\times 2^{-1}\times 3^{-1}\times 3^{1}}{2^{-3}\times 2^{1}\times 3^{-1}}=
2
−3
×2
1
×3
−1
2
−1
×2
−1
×3
−1
×3
1
=\dfrac{2^{-1-1}\times 3^{-1+1}}{2^{-3+1}\times 3^{-1}}=
2
−3+1
×3
−1
2
−1−1
×3
−1+1
=\dfrac{2^{-2}\times 3^{0}}{2^{-2}\times 3^{-1}}=
2
−2
×3
−1
2
−2
×3
0
Step 5. Use the formula \dfrac{a^{m}}{a^{n}}=a^{m-n}
a
n
a
m
=a
m−n
to simplify.
=2^{-2-(2)}\times 3^{0-(-1)}=2
−2−(2)
×3
0−(−1)
=2^{-2+2}\times 3^{0+1}=2
−2+2
×3
0+1
=2^{0}\times 3^{1}=2
0
×3
1
=1\times 3=1×3
Since 2^{0}=12
0
=1 and 3^{1}=33
1
=3
=\bold{3}=3