Simplify(64/125)∧-2/3 +1/(256/625)∧1/4 +√253/ 3√64
Answers
Answered by
7
Given, (64/125)^-2/3 +1/(256/625)^1/4 +root 253/ 3 root 64
Which can be written as,
= (125/64)^2/3 + (625/256)^1/4 +root 253/ 3 * 8
= (5^3/4^3)^2/3 + (5^4/4^4)^1/4 + root 253/8
= 25/16 + 5 + root 253/4
= 25 + 4(5+root 253)/16
= 25+20+4root253/16
= 45+4root253/16
Hope this helps!
Which can be written as,
= (125/64)^2/3 + (625/256)^1/4 +root 253/ 3 * 8
= (5^3/4^3)^2/3 + (5^4/4^4)^1/4 + root 253/8
= 25/16 + 5 + root 253/4
= 25 + 4(5+root 253)/16
= 25+20+4root253/16
= 45+4root253/16
Hope this helps!
Answered by
2
(64/125)^-2/3 +1/(256/625)^1/4 + √253/ 3√64
◾We can also write it as,
➡ (125/64)^2/3 + (625/256)^1/4 + √253/ 3 * 8
➡ (5^3/4^3)^2/3 + (5^4/4^4)^1/4 + √253/8
➡ 25/16 + 5 + √253/4
➡ 25 + 4(5+ √253)/16
➡ 25+20+4√253/16
➡ 45+4√253/16
◾We can also write it as,
➡ (125/64)^2/3 + (625/256)^1/4 + √253/ 3 * 8
➡ (5^3/4^3)^2/3 + (5^4/4^4)^1/4 + √253/8
➡ 25/16 + 5 + √253/4
➡ 25 + 4(5+ √253)/16
➡ 25+20+4√253/16
➡ 45+4√253/16
Similar questions