Math, asked by Deeptix01, 1 year ago

simplify 64/125 raised to the power-2/3

Answers

Answered by mysticd
308

Answer:

 \left(\frac{64}{125}\right)^{\frac{-2}{3}}=\frac{25}{16}

Step-by-step explanation:

 Given,\left(\frac{64}{125}\right)^{\frac{-2}{3}}

=\left(\frac{4^{3}}{5^{3}}\right)^{\frac{-2}{3}}

=\left(\big(\frac{4}{5}\big)^{3}\right)^{\frac{-2}{3}}

/* By Exponential Law:

\frac{a^{n}}{b^{n}}=\left(\frac{a}{b}\right)^{n}

=\left(\frac{4}{5}\right)^{3\times \frac{-2}{3}}

=\left(\frac{4}{5}\right)^{-2}

\* By Exponential Law:

\left(a^{m}\right)^{n}=a^{mn}

=\left(\frac{5}{4}\right)^{2}

/* By Exponential Law:

\left(\frac{a}{b}\right)^{-n}=\left(\frac{b}{a}\right)^{n}

=\frac{5^{2}}{4^{2}}\\=\frac{25}{16}

Therefore,

 \left(\frac{64}{125}\right)^{\frac{-2}{3}}=\frac{25}{16}

•••♪

Answered by abhimanyurawat460
108

Answer:

25/16

Step-by-step explanation:

64/125^-2/3=

125/64^2/3=

(5^3/4^3)^2/3=

(5/4)^2=

25/16

Similar questions