Math, asked by zainabkausar20209, 3 months ago

simplify (64)-2/3
____
(125)​

Attachments:

Answers

Answered by garvsingh2705
0

25/16

Step-by-step explanation:

(64/125)-⅔

(125/64)³/²

(5/4)³/²*³

(5/4)²

25/16

Answered by vaishnavi1177
1

ɢɪᴠᴇɴ :

 {( \frac{64}{125}) }^{ \frac{-2}{3} }

ᴛᴏ ꜰɪɴᴅ :

Simplified form

ꜱᴏʟᴜᴛɪᴏɴ:

{( \frac{64}{125}) }^{ \frac{-2}{3} }

We know that,

 {( \frac{a}{b} )}^{m}  =  \frac{ {a}^{m} }{ {b}^{m} }

  \frac{ {(64)}^{ \frac{-2}{3} } }{ {(125)}^{ \frac{-2}{3} } }

By taking prime factorisation of 64 and 125

   =\frac{ {(4 \times 4 \times 4)}^{ \frac{-2}{3} } }{ {(5 \times 5 \times 5)}^{ \frac{-2}{3} } }   \\  \\  = \frac{ {( {4}^{3} )}^{ \frac{-2}{3} } }{ {( {5}^{3} )}^{ \frac{-2}{3} } }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

We know that,

 {( {a}^{m} )}^{n}  =  {a}^{m \times n}

 =  \frac{  { {4}^{3 \times }}^{ \frac{-2}{3} }  }{ { {5}^{3 \times }  }^{ \frac{-2}{3} } }  \\  \\ =  \frac{ {4}^{-2} }{ {5}^{-2} }   \:  \:  \:  \:  \:  \\  \\ We\:  \:  know\:  \:  that ,\\{ a }^{-m}=  \frac{1}{{a}^{m}} \\ \\=  \frac{1/16}{1/25} \\ \\=\frac{25}{16} \:  \:  \:  \:  \:

Similar questions