Simplify: [( 7)-3 ÷ (7)-8] x 7-6
Answers
Answer:
-10x to the power7 - 42/ 7
Step-by-step explanation:
How to solve your problem
[
(
7
)
−
1
⋅
3
(
7
)
−
8
]
7
−
6
[(7)-1 \cdot \frac{3}{(7)}-8]x^{7}-6
[(7)−1⋅(7)3−8]x7−6
Simplify
1
Multiply the numbers
[
7
−
1
⋅
3
7
−
8
]
7
−
6
[7{\color{#c92786}{-1}} \cdot {\color{#c92786}{\frac{3}{7}}}-8]x^{7}-6
[7−1⋅73−8]x7−6
[
7
−
3
7
−
8
]
7
−
6
[7{\color{#c92786}{-\frac{3}{7}}}-8]x^{7}-6
[7−73−8]x7−6
2
Add the numbers
[
7
−
3
7
−
8
]
7
−
6
[{\color{#c92786}{7}}{\color{#c92786}{-\frac{3}{7}}}{\color{#c92786}{-8}}]x^{7}-6
[7−73−8]x7−6
[
−
1
0
7
]
7
−
6
[{\color{#c92786}{-\frac{10}{7}}}]x^{7}-6
[−710]x7−6
3
Combine multiplied terms into a single fraction
−
1
0
7
7
−
6
-\frac{10}{7}x^{7}-6
−710x7−6
−
1
0
7
7
−
6
\frac{-10x^{7}}{7}-6
7−10x7−6
4
Find common denominator
−
1
0
7
7
−
6
\frac{-10x^{7}}{7}-6
7−10x7−6
−
1
0
7
7
+
7
(
−
6
)
7
\frac{-10x^{7}}{7}+\frac{7(-6)}{7}
7−10x7+77(−6)
5
Combine fractions with common denominator
−
1
0
7
7
+
7
(
−
6
)
7
\frac{-10x^{7}}{7}+\frac{7(-6)}{7}
7−10x7+77(−6)
−
1
0
7
+
7
(
−
6
)
7
\frac{-10x^{7}+7(-6)}{7}
7−10x7+7(−6)
6
Multiply the numbers
−
1
0
7
+
7
(
−
6
)
7
\frac{-10x^{7}+{\color{#c92786}{7}}({\color{#c92786}{-6}})}{7}
7−10x7+7(−6)
−
1
0
7
−
4
2
7
\frac{-10x^{7}{\color{#c92786}{-42}}}{7}
7−10x7−42