Math, asked by brotechies, 7 months ago

simplify√7−√5/√7+√5​

Answers

Answered by tennetiraj86
1

Answer:

answer for the given problem is given

Attachments:
Answered by anindyaadhikari13
4

\bf\large\underline\blue{Question:-}

  • Simplify  \frac{ \sqrt{7}  -  \sqrt{5} }{ \sqrt{7}  +  \sqrt{5} }

\bf\large\underline\blue{Solution:-}

 \frac{ \sqrt{7} -  \sqrt{5}  }{ \sqrt{7}  +  \sqrt{5} }

Now, we have to rationalise the denominator,

Rationalising the denominator means to remove all the surds from the denominator.

We get

 \frac{ \sqrt{7} -  \sqrt{5}  }{ \sqrt{7}  +  \sqrt{5} }

 \frac{ (\sqrt{7} -  \sqrt{5}  )}{ (\sqrt{7}  +  \sqrt{5} )}  \times  \frac{ (\sqrt{7} -  \sqrt{5} ) }{( \sqrt{7} -  \sqrt{5}  )}

 =  \frac{ {( \sqrt{7}  -  \sqrt{5} )}^{2} }{ {( \sqrt{7} )}^{2} -  {( \sqrt{5} )}^{2}  }

 =  \frac{7 + 5 - 2 \times  \sqrt{7}  \times  \sqrt{5} }{7 - 5}

 =  \frac{12 - 2 \sqrt{35} }{2}

 = 6 -  \sqrt{35}

\bf\large\underline\blue{Answer:-}

  • On Simplifying, we get 6 -  \sqrt{35}
Similar questions