Math, asked by nandanadnair1, 3 months ago

Simplify : ( 8/27 )−2/3 × (4 / 9)−3 /2 and write the result in positive exponential form.

Answers

Answered by Anonymous
1

Step-by-step explanation:

( { \frac{8}{27}) }^{  - \frac{ 2}{3} }  \times ( { \frac{4}{9} )}^{ -  \frac{3}{2} }  \\  \\  =  ({ (\frac{2}{3} )}^{3} ) {}^{ -  \frac{2}{3} }  \times  (({ \frac{2}{3} )}^{2} ) {}^{ -  \frac{3}{2} }  \\  \\  =  ({ \frac{2}{3} )}^{3 \times ( -  \frac{2}{3} )}  \times  {( \frac{2}{3} )}^{2 \times ( -  \frac{3}{2}) }  \\  \\  = ( { \frac{2}{3} )}^{ - 2}  \times  ({ \frac{2}{3} )}^{ - 3}  \\  \\  =  \frac{1}{ ({ \frac{2}{3}) }^{2} }  \times  \frac{1}{ ({ \frac{2}{3} })^{3} }  \\  \\  =  (\frac{3}{2} ) {}^{2}  \times(  { \frac{3}{2} )}^{3}  \\  \\  =  ({ \frac{3}{2} )}^{2 + 3}  \\  \\  = ( { \frac{3}{2}) }^{5}  \\  \\  \\ using \:  \: formula \:  \:  (({x}) {}^{m} ) {}^{n }  =  {x}^{ m\times \: n }  \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: {x}^{ - n}  =  \frac{1}{ {x}^{n} }  \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: {x}^{m}  \times  {x}^{n}  =  {x}^{ m+ n}

Similar questions