Math, asked by rehadewan08, 3 months ago

simplify : 8 ( 5√2+1 ) / (√2+1 )² – ( √2–1 )²

( don't give unnecessary answers ) ( give correct answer only )​

Attachments:

Answers

Answered by Akhileshkoul
1

Step-by-step explanation:

please mark me as brainlisy

Attachments:
Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:\dfrac{8(5 \sqrt{2}  + 1)}{ {( \sqrt{2}  + 1)}^{2}  -  {( \sqrt{2} - 1) }^{2} }

\rm \:  =  \:  \: \:\dfrac{8(5 \sqrt{2}  + 1)}{ 4 \times  \sqrt{2}  \times 1}

 \:  \:  \:  \:  \:  \:  \: \bigg( \because \:  {(x + y)}^{2}  -  {(x - y)}^{2}   = 4xy\bigg)

\rm \:  =  \:  \: \:\dfrac{ \cancel4 \times 2 \times (5 \sqrt{2}  + 1)}{  \cancel4 \times  \sqrt{2} }

\rm \:  =  \:  \: \:\dfrac{  2 \times (5 \sqrt{2}  + 1)}{    \sqrt{2}}

\rm \:  =  \:  \: \:\dfrac{ \cancel{\sqrt{2}}  \times  \sqrt{2} \times (5 \sqrt{2}  + 1)}{ \cancel{\sqrt{2}}}

\rm \:  =  \:  \: \: \sqrt{2}  \times (5 \sqrt{2}  + 1)

\rm \:  =  \:  \: \:10 +  \sqrt{2}

Hence,

\bf :\longmapsto\:\dfrac{8(5 \sqrt{2}  + 1)}{ {( \sqrt{2}  + 1)}^{2}  -  {( \sqrt{2} - 1) }^{2} }  = 10 +  \sqrt{2}

More Identities to know:

  • (a + b)² = a² + 2ab + b²

  • (a - b)² = a² - 2ab + b²

  • a² - b² = (a + b)(a - b)

  • (a + b)² = (a - b)² + 4ab

  • (a - b)² = (a + b)² - 4ab

  • (a + b)² + (a - b)² = 2(a² + b²)

  • (a + b)³ = a³ + b³ + 3ab(a + b)

  • (a - b)³ = a³ - b³ - 3ab(a - b)
Similar questions