Math, asked by Bandana111, 1 year ago

Simplify 8 power 1/3 * 16power 1/3 / 32 power -1/3

Answers

Answered by mysticd
178

Answer:

Value \: of \:\frac{8^{\frac{1}{3}}\times (16)^{\frac{1}{3}}}{(32)^{\frac{-1}{3}}}=16

Step-by-step explanation:

\frac{8^{\frac{1}{3}}\times (16)^{\frac{1}{3}}}{(32)^{\frac{-1}{3}}}

=8^{\frac{1}{3}}\times (16)^{\frac{1}{3}}\times (32)^{\frac{-1}{3}}

/* By Exponential identity:

\boxed { \frac{1}{a^{-n}}=a^{n}}

=\sqrt[3]{8\times 16 \times 32}

=\sqrt[3]{2^{3}\times 2^{4}\times 2^{5}}

=\sqrt[3]{2^{3+4+5}}

=\sqrt[3]{2^{12}}

= 2^{\frac{12}{3}}

/* \boxed {(a^{m})^{n}=a^{mn}}*/

=2^{4}

=16

Therefore,

Value \: of \:\frac{8^{\frac{1}{3}}\times (16)^{\frac{1}{3}}}{(32)^{\frac{-1}{3}}}=16

•••♪

Answered by erinna
62

Given:

The expression is

\dfrac{8^{\frac{1}{3}}\times 16^{\frac{1}{3}}}{32^{-\frac{1}{3}}}

To find:

The simplified form of the given expression.

Solution:

We have,

\dfrac{8^{\frac{1}{3}}\times 16^{\frac{1}{3}}}{32^{-\frac{1}{3}}}

=\dfrac{(2^3)^{\frac{1}{3}}\times (2^4)^{\frac{1}{3}}}{(2^5)^{-\frac{1}{3}}}

Using properties of exponent, we get

=\dfrac{2^{\frac{3}{3}}\times 2^{\frac{4}{3}}}{2^{-\frac{5}{3}}}      [\because (a^m)^n=a^{mn}]

=\dfrac{2^{1}\times 2^{\frac{4}{3}}}{2^{-\frac{5}{3}}}

=\dfrac{2^{1+\frac{4}{3}}}{2^{-\frac{5}{3}}}      [\because a^ma^n=a^{m+n}]

=\dfrac{2^{\frac{7}{3}}}{2^{-\frac{5}{3}}}  

=2^{\frac{7}{3}-(-\frac{5}{3})}        [\because \dfrac{a^m}{a^n}=a^{m-n}]

=2^{\frac{7}{3}+\frac{5}{3}}  

=2^{\frac{12}{3}}  

=2^4  

=16  

Therefore, the value of given expression is 16.

Similar questions