Math, asked by parul9985, 1 year ago

simplify :

[81/16]^-3/4 into [25/9]^-3/2​

Answers

Answered by skh2
3

 {( \frac{81}{16})}^{ \frac{ - 3}{4}} \times {(\frac{25}{9})}^{ \frac{ - 3}{2}} \\

 \rule{200}{2}

We know from the rules of Exponents and Radicals that :-

 {a}^{ \frac{m}{n}} = \sqrt[n]{{a}^{m}} \\ \\

 \rule{200}{2}

Applying this in the question we get :-

 \sqrt[4]{{(\frac{81}{16})}^{ - 3}} \times \sqrt{ {( \frac{25}{9})}^{ - 3} }

 \rule{200}{2}

Also we know that :-

 {a}^{ - m} =  \frac{1}{{a}^{m}} \\ \\

 \rule{200}{2}

Applying this in the question we get again :-

\sqrt[4]{{(\frac{81}{16})}^{ - 3}} \times \sqrt{ {( \frac{25}{9})}^{ - 3}} \\  \\  \\ = \sqrt[4]{{(\frac{16}{81})}^{3}} \times \sqrt{ {( \frac{9}{25})}^{3}} \\  \\  \\ = \sqrt[4]{ \frac{16 \times 16 \times 16}{81 \times 81 \times 81} } \times \sqrt{ {( \frac{9}{25})}^{ 3}} \\  \\  \\ =  \frac{8}{27} \times  \frac{9}{25} \times  \frac{3}{5} \\  \\  \\ =  \frac{8}{125}

 \rule{200}{2}

We know that :-

16 =  {2}^{4} \\  \\81 =  {3}^{4} \\  \\  \\9 =  {3}^{2} \\  \\25 =  {5}^{2}

Answered by sanju2363
1

Step-by-step explanation:

Hey friend, \\  \\ </p><p>Here  \:  \: is \:  \:  the \:  \:  answer \:  \:  you  \: were \:  looking  \:  \: for: \\  \\ </p><p>\begin{gathered} {( \frac{81}{16} )}^{ - \frac{3}{4} } \times {( \frac{25}{9} )}^{ - \frac{3}{2} } \\ \\ = {( \frac{ {3}^{4} }{ {2}^{4} } })^{ - \frac{3}{4} } \times {( \frac{ {5}^{2} }{ {3}^{2} }) }^{ - \frac{3}{2} } \\ \\ = {( \frac{3}{2}) }^{4 \times - \frac{3}{4} } \times {( \frac{5}{3} )}^{2 \times - \frac{3}{2} } \\ \\ = {( \frac{3}{2} )}^{ - 3} \times {( \frac{5}{3}) }^{ - 3} \\ \\ = {( \frac{2}{3}) }^{3} \times {( \frac{3}{5} )}^{3} \\ \\ = \frac{2 \times 2 \times 2}{3 \times 3 \times 3} \times \frac{3 \times 3 \times 3}{5 \times 5 \times 5} \\ \\ = \frac{2 \times 2 \times 2}{5 \times 5 \times 5} \\ \\ = \frac{8}{125} \end{gathered} \\  \\ </p><p>Hope \:  \:  this  \:  \: helps!!!

Similar questions