Simplify : (81/625)^-3/4 × [(25/9)^-3/2 + (5/2)^-3]
...ッ
Answers
Step-by-step explanation:
Given :-
(81/625)^-3/4 × [(25/9)^-3/2 + (5/2)^-3]
To find:-
Simplify the expression?
Solution:-
Given numerical expression is
(81/625)^-3/4 × [(25/9)^-3/2 + (5/2)^-3]
81 = 3×3×3×3 = 3⁴
625=5×5×5×5 = 5⁴
25 = 5×5 = 5²
9 = 3×3 = 3²
Now,
(3⁴/5⁴)^(-3/4) × [ (5²/3²)^(-3/2) + (5/2)^-3]
We know that
(a/b)^m = a^m / b^m
=> [(3/5)⁴]^(-3/4) ×[ {(5/3)²}^(-3/2) + (5/2)^-3]
=>(3/5)^(4×-3/4) ×[(5/3)^(2×-3/2) +(5/2)^-3]
Since (a^m)^n = a^(mn)
=>(3/5)^-3 × [(5/3)^-3 + (5/2)^-3]
We know that a^-n = 1/a^n
=> (5/3)³ ×[(3/5)³+(2/5)³]
=> (125/27) × [ (27/125)+(8/125)]
=> (125/27) ×[(27+8)/125]
=> (125/27)×(35/125)
=> (125×35)/(27×125)
=>(125×35)/(27×125)
=>35/27
Answer:-
The value of the given expression is 35/27
Used formulae:-
- (a/b)^m = a^m / b^m
- (a^m)^n = a^(mn)
- a^-n = 1/a^n
Answer:
35/27
Step-by-step explanation:
☞ (81/625)^-3/4×[(25/9^-3/2+2/5³]
☞ prime factors of 81,625,25 and 9 are as respectively 3⁴,5⁴,5² & 3².
☞ So, (3⁴/5⁴)^(-3/4)×[(5²/3²)^(-3/2)+(2/5)³]
☞ (x/y)^n=x^n/y^n
☞ [(3/5)⁴]^(-3/4)×[{(5/3)²}^(-3/2)+(2/5)³]
☞ (3/5)^(4×-3/4)×[(5/3)^(2×-3/2)+(2/5)³]
☞ Since (x^y)^z = x^(yz)
☞(3/5)^-3 ×[(5/3)^-3 +(2/5)³]
☞as x^-y=1/x^y
☞(5/3)³ ×[(3/5)³+(2/5)³]
☞(125/27) [ (27/125)+(8/125)]
☞(125/27) (27+8)/125]
☞(125/27)x(35/125)
☞(125x35)/(27x125)
☞(125x35)/(27x125)
☞35/27
Equations to remeber!
1.(x/y)^n=x^n/y^n
2.(x^y)^z = x^(yz)
3.x^-y=1/x^y
...ッ