Math, asked by nitinmahato1256, 8 months ago

simplify (81a4b8c-4)1/4​

Answers

Answered by pulakmath007
6

SOLUTION

TO EVALUATE

  \displaystyle \sf{ {(81 {a}^{4} {b}^{8} {c}^{ - 4}   )}^{ \frac{1}{4} } }

FORMULA TO BE IMPLEMENTED

We are aware of the formula on indices that

  \displaystyle \sf{ {( {a}^{m} )}^{n} =  {a}^{mn}  }

EVALUATION

Here the given expression is

  \displaystyle \sf{ {(81 {a}^{4} {b}^{8} {c}^{ - 4}   )}^{ \frac{1}{4} } }

Now

  \displaystyle \sf{ {81 {a}^{4} {b}^{8} {c}^{ - 4}}^{ } }

  \displaystyle \sf{  = { {3}^{4}  {a}^{4} { ({b}^{2} )}^{4}  { ({c}^{ - 1}) }^{4} }^{ } }

  \displaystyle \sf{  =   {(3a {b}^{2}  {c}^{ - 1} )}^{4}  }

Now

  \displaystyle \sf{ {(81 {a}^{4} {b}^{8} {c}^{ - 4}   )}^{ \frac{1}{4} } }

  \displaystyle \sf{  = { \bigg( {(3a {b}^{2}  {c}^{ - 1} )}^{4}   \bigg)}^{ \frac{1}{4} } }

  \displaystyle \sf{  = { \bigg( {(3a {b}^{2}  {c}^{ - 1} )}^{}   \bigg)}^{4 \times  \frac{1}{4} } }

  \displaystyle \sf{  = { \bigg( {(3a {b}^{2}  {c}^{ - 1} )}^{}   \bigg)}^{1 } }

  \displaystyle \sf{  = 3a {b}^{2}  {c}^{ - 1}  }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Using law of exponents, simplify (5²)³÷5³

https://brainly.in/question/36250730

2. If 2x× 4x=(8)1/3 × (32)1/5 ,then find the value of x

https://brainly.in/question/14155738

Answered by gvms2006
1

Answer:

thank you veerryyyy much

Similar questions