Math, asked by soniabudhiraja9911, 10 months ago

Simplify
9⅓ x 27-½ ÷ 3¹/6 x 3-⅔

Answers

Answered by Anonymous
30

Answer:

hey mate

Step-by-step explanation:

here is your answer

solution

=> \frac{ {9}^{ \frac{1}{3} \times  {27}^{ -  \frac{1}{2} }  } }{ {3}^{ -  \frac{1}{6}  }  \times </p><p>{3}^{ -  \frac{2}{3} } }

=>(3)²⅓ × (3³)-½ / 2 -1/6 × 3 - ⅔

=>3 ⅔ × 3 - 3/2 / 3-1/6 × 3 - ⅔

=> \frac{ {3}^{ \frac{4}{6}  - \frac{3}{2}  } }{ {3}^{ -  \frac{1}{6}  - \frac{2}{3}  } }

=> \frac{ {3}^{ -  \frac{5}{6} } }{ {3}^{ -  \frac{5}{6} } }

=> {3}^{ -  \frac{5}{6}  +  \frac{5}{6}  }

=>  {3}^{0}

=> 1

thanku

#BeBrainly

Answered by umiko28
15

Step-by-step explanatio

 \sf\red{ {9}^{ \frac{1}{3} } } \\  \sf\red{ =  &gt;  {3}^{2 \times  \frac{1}{3} } } \\  \sf\red{ =  &gt; 3^2/3} \\  \sf\blue{ {27}^{  \frac{ - 1}{2} } } \\  \sf\blue{ =  &gt;  {3}^{3 \times  \frac{ - 1}{2} } =  &gt;  {3}^{ \frac{ - 3}{2} }  } \\ \sf\purple{we \: know \:  {a}^{m}  +  {a}^{n}  =  {a}^{m + n}  } \\ \sf\orange{ =  &gt;  \frac{ {3}^{2/3 +   \frac{ - 3}{2} } }{  {3}^{ \frac{ -1}{6}  +  \frac{ - 2}{3} } } } \\ \sf\purple{ =  &gt; {3}^{ \frac{4 - 9}{2 } }    \div  {3}^{ \frac{ - 1 - 4}{6} } } \\ \sf\purple{ =  &gt; \frac{ {3}^{ \frac{ - 5}{6} } }{ {3}^{ \frac{ - 5}{6} } }  } \\  \sf\red{we \: know \:  \frac{ {a}^{m} }{   {a}^{n} } =  {a}^{m - n}  } \\ \sf\purple{ =  &gt; {3}^{ \frac{ - 5}{6}  -  \frac{ - 5}{6}  }  } \\ \sf\purple{ =  &gt; {3}^{ \frac{ - 5 + 5}{6} }  } \\ \sf\purple{ =  &gt;  {3}^{ \frac{0}{6} }  =  {3}^0 } }

\large\boxed{ \fcolorbox{red}{purple}{mark \: as \: brainlisr}}

\large\boxed{ \fcolorbox{purple}{yellow}{pls \: follow \: me}}

Similar questions