Simplify: ( a+ 1/a) 2 + ( a- 1/a) 2
Answers
Given to simplify the value of :-
(a +1/a)² + (a -1/a)²
SOLUTION:-
Method - 1 :-
Expanding the 1st term using (a+b)² = a² + 2ab + b²
Expanding the 2nd term using (a-b)² = a²- 2ab + b²
= (a)² +(1/a)² + 2(a)(1/a) + (a)² + (1/a)² - 2(a)(1/a)
= a² + 1/a² + 2 + a² + 1/a² - 2
Keeping like term together
= a² + a² + 1/a² + 1/a² + 2 -2
= 2a² + 2/a²
So, the value of (a+1/a)² + (a -1/a)² is 2a² + 2/a²
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
Method -2 :-
Without expanding the first term and second term we have algebraic identity that is
(a + b)² + (a -b)² is 2[a² + b²]
(a +1/a)² + (a -1/a)²
= 2[a² + 1/a²]
= 2a² + 2/a²
So, the value of (a+1/a)² + (a -1/a)² is 2a² + 2/a²
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
Know more algebraic identities:-
( a + b )² + ( a - b)² = 2a² + 2b²
( a + b )² - ( a - b)² = 4ab
( a+b)(a -b ) = a² - b²
( a + b + c )² = a² + b² + c² + 2ab + 2bc + 2ca
a² + b² = ( a + b)² - 2ab
(a + b )³ = a³ + b³ + 3ab ( a + b)
( a - b)³ = a³ - b³ - 3ab ( a - b)
a³ + b³ = (a +b)(a² - ab + b²)
a³ - b³ = (a-b)(a² + ab +b²)
If a + b + c = 0 then a³ + b³ + c³ = 3abc
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬