Simplify:
a^2(2b-a^2)-2b(a^3-a^2)+3a^2(a^3-b)
Answers
Answer:
STEP
1
:
1
Simplify —
2
Equation at the end of step
1
:
(b2) b 1
((((((((a2)+————)-(b3))-a)+(—•(a2)))-2ab)+(2•(b2)))-(—•a))-2b
(a3) 2 2
STEP
2
:
Equation at the end of step
2
:
(b2) b a
((((((((a2)+————)-(b3))-a)+(—•(a2)))-2ab)+2b2)-—)-2b
(a3) 2 2
STEP
3
:
b
Simplify —
2
Equation at the end of step
3
:
(b2) b a
((((((((a2)+————)-(b3))-a)+(—•a2))-2ab)+2b2)-—)-2b
(a3) 2 2
STEP
4
:
Equation at the end of step 4
(b2) a2b a
((((((((a2)+————)-(b3))-a)+———)-2ab)+2b2)-—)-2b
(a3) 2 2
STEP
5
:
b2
Simplify ——
a3
Equation at the end of step
5
:
b2 a2b a
((((((((a2)+——)-b3)-a)+———)-2ab)+2b2)-—)-2b
a3 2 2
STEP
6
:
Rewriting the whole as an Equivalent Fraction :
6.1 Adding a fraction to a whole
Rewrite the whole as a fraction using a3 as the denominator :
a2 a2 • a3
a2 = —— = ———————
1 a3
Equivalent fraction : The fraction thus generated looks different but has the same value as the whole
Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator
Adding fractions that have a common denominator :
6.2 Adding up the two equivalent fractions
Add the two equivalent fractions which now have a common denominator
Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:
a2 • a3 + b2 a5 + b2
———————————— = ———————
a3 a3
Equation at the end of step
6
:
(a5+b2) a2b a
((((((———————-b3)-a)+———)-2ab)+2b2)-—)-2b
a3 2 2
STEP
7
:
Rewriting the whole as an Equivalent Fraction
7.1 Subtracting a whole from a fraction
Rewrite the whole as a fraction using a3 as the denominator :
b3 b3 • a3
b3 = —— = ———————
1 a3
Adding fractions that have a common denominator :
7.2 Adding up the two equivalent fractions
(a5+b2) - (b3 • a3) a5 - a3b3 + b2
——————————————————— = ——————————————
a3 a3
Equation at the end of step
7
:
(a5-a3b3+b2) a2b a
(((((————————————-a)+———)-2ab)+2b2)-—)-2b
a3 2 2
STEP
8
:
Rewriting the whole as an Equivalent Fraction
8.1 Subtracting a whole from a fraction
Rewrite the whole as a fraction using a3 as the denominator :
a a • a3
a = — = ——————
1 a3
Trying to factor a multi variable polynomial :
8.2 Factoring a5 - a3b3 + b2
Try to factor this multi-variable trinomial using trial and error
Factorization fails
Adding fractions that have a common denominator :
8.3 Adding up the two equivalent fractions
(a5-a3b3+b2) - (a • a3) a5 - a4 - a3b3 + b2
——————————————————————— = ———————————————————
a3 a3
Equation at the end of step
8
:
(a5-a4-a3b3+b2) a2b a
((((———————————————+———)-2ab)+2b2)-—)-2b
a3 2 2
STEP
9
:
Checking for a perfect cube
9.1 a5-a4-a3b3+b2 is not a perfect cube
Calculating the Least Common Multiple :
9.2 Find the Least Common Multiple
The left denominator is : a3
The right denominator is : 2
Number of times each prime factor
appears in the factorization of:
Prime
Factor Left
Denominator Right
Denominator L.C.M = Max
{Left,Right}
2 0 1 1
Product of all
Prime Factors 1 2 2
Number of times each Algebraic Factor
appears in the factorization of:
Algebraic
Factor Left
Denominator Right
Denominator L.C.M = Max
{Left,Right}
a 3 0 3
Least Common Multiple:
2a3
Calculating Multipliers :
9.3 Calculate multipliers for the two fractions
Denote the Least Common Multiple by L.C.M
Denote the Left Multiplier by Left_M
Denote the Right Multiplier by Right_M
Denote the Left Deniminator by L_Deno
Denote the Right Multiplier by R_Deno
Left_M = L.C.M / L_Deno = 2
Right_M = L.C.M / R_Deno = a3
Making Equivalent Fractions
Hi
I am Leena
Will you become my friend
sorry sis I didn't understand the question
will you give me your number
please