Math, asked by shreyamishra8374, 8 months ago

simplify
(a^2+b^2)^2 - (a^2-b^2)^2​

Attachments:

Answers

Answered by sandeep6321
1

Step-by-step explanation:

Hope This Helps ....

Plz Mark it as The BRAINLIEST

plz...plz...plz...

Attachments:
Answered by Anonymous
10

\blue\bigstarAnswer:

  • (a² + b²)² - (a² - b²)² = 4a²b²

\pink\bigstar Given:

  • (a² + b²)² - (a² - b²)²

\green\bigstarTo find:

  • To Simplify : (a² + b²)² - (a² - b²)²

\blue\bigstar Solution:

(a² + b²)² - (a² - b²)²

\implies(a² + b²)² - {(a - b)(a + b)}²

[ By using (a + b)(a - b) = a² - b² ]

\implies (a² + b²)² - {(a - b)(a + b)}²

\implies(a² + b²)² - {(a - b)²}{(a + b)²}

[ By using {(a)(b)}² = a²b² ]

\implies(a² + b²)² - {a² - 2ab + b²}{a² + 2ab + b²}

[ By using (a + b)² = a² + 2ab + b² and (a - b)² = a² - 2ab + b² ]

\implies(a⁴ + 2a²b² + b⁴) - {a² - 2ab + b²}{a² + 2ab + b²}

[ By using (a + b)² = a² + b² + 2ab ]

\implies (a⁴ + 2a²b² + b⁴) - { a⁴ + 2a³b + a²b² - 2a³b - 4a²b² - 2ab³ + a²b² + 2ab³ + b⁴ }

\implies(a⁴ + 2a²b² + b⁴) - (a⁴ + a²b² - 4a²b² + a²b² + b⁴)

\implies(a⁴ + 2a²b² + b⁴) - (a⁴ + 2a²b² - 4a²b² + b⁴)

\implies(a⁴ + 2a²b² + b⁴) - (a⁴ - 2a²b² + b⁴)

\impliesa⁴ + 2a²b² + b⁴ - a⁴ + 2a²b² - b⁴

\implies4a²b²

\therefore (a² + b²)² - (a² - b²)² = 4a²b²

\pink\bigstar Concepts Used:

  • (a + b)(a - b) = a² - b²
  • {(a)(b)}² = a²b²
  • (a + b)² = a² + 2ab + b²
  • (a - b)² = a² - 2ab + b²
  • Negative × Negative = Positive

\red\bigstarExtra - Information:

  • (x + a)(x + b) = x² + (a + b) x + ab

  • (a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca

  • (a + b)³ = a³ + b³ + 3ab (a + b)

  • (a – b)³ = a³ – b³ – 3ab (a – b)

  • a³ + b³ + c³ – 3abc = (a + b + c)(a² + b² + c² – ab – bc – ca)

  • a³ + b³ = (a + b)(a² - ab + b²)

Similar questions