Simplify : (a^2-b^2)^3+(b^2-c^2)^3+(c^2-a^2)^3/(a-b)3+(b-c)^3+(c-a)^3
Answers
Answered by
1
Step-by-step explanation:
We use the following result,
if x + y + z = 0 then x³ + y³ + z³ = 3xyz
First x = a² - b² , y = b² - a² and z = c² - a²
⇒ x + y + z = a² - b² + b² - c² + c² - a² = 0
So, (a² - b²)³ + (b² - a²)³ + (c² - a²) = 3(a² - b²)(b² - a²)(c² - a²)
Second, x = a - b , y = b - c and z = c - a
⇒ x + y + z = a - b + b - c + c - a = 0
So, (a - b)³ + (b - c)³ + (c - a)³ = 3(a - b)(b - c)(c - a)
Thus, we get
Now using, x² - y² = ( x - y )( x + y )
Therefore, On simplifying we get ( a + b )( b + c )( c + a )
Read more on Brainly.in - https://brainly.in/question/4462525#readmore
Similar questions