Math, asked by vidishayadav26, 10 months ago

Simplify : (a^2-b^2)^3+(b^2-c^2)^3+(c^2-a^2)^3/(a-b)3+(b-c)^3+(c-a)^3

Answers

Answered by Anonymous
2

Answer:

On simplifying we get ( a + b )( b + c )( c + a )

Step-by-step explanation:

Given Expression:

We need to simplify given expression.

We use the following result,

if x + y + z = 0 then x³ + y³ + z³ = 3xyz

First x = a² - b² , y = b² - a² and z = c² - a²

⇒ x + y + z = a² - b² + b² - c² + c² - a² = 0

So, (a² - b²)³ + (b² - a²)³ + (c² - a²) = 3(a² - b²)(b² - a²)(c² - a²)

Second, x = a - b  ,  y = b - c  and z = c - a

⇒ x + y + z = a - b + b - c + c - a = 0

So,  (a - b)³ + (b - c)³ + (c - a)³ = 3(a - b)(b - c)(c - a)

Thus, we get (write answer on own)

Now using, x² - y² = ( x - y )( x + y )

Therefore, On simplifying we get ( a + b )( b + c )( c + a )

Answered by nitashachadha84
6

\huge{ \boxed{ \rm{ \red{answer}}}}

 \green{ \frac{  {({a}^{2}  -  {b}^{2} )}^{3}  +  { {(b}^{2}  -  {c}^{2}) }^{3}  +  { ({c}^{2}  -  {a}^{2}) }^{3} }{ {(a - b)}^{3} +  {(b - c)}^{3}  +   {(c - a)}^{3}  } } \\  \\  =   \orange{a - b + b - c + c - a} \\  \\  =  \: a - a \\  \\  =  \red{0}

<b><marquee>mark me as brainliest

Similar questions