Math, asked by swainsonu205pcy5nw, 1 year ago

Simplify:-
(a^2-b^2)(a^2-ab+b^2)(a^2+ab+b^2)

Answers

Answered by Swarup1998
17

Solution :

(a² - b²) (a² - ab + b²) (a² + ab + b²)

= (a + b) (a - b) (a² - ab + b²) (a² + ab + b²)

= {(a + b) (a² - ab + b²)}

{(a - b) (a² + ab + b²)}

= (a³ + b³) (a³ - b³)

= a⁶ - b⁶ ,

which is the required simplification.

Identity Rules :

  • a² - b² = (a + b) (a - b)
  • a³ + b³ = (a + b) (a² - ab + b²)
  • a³ - b³ = (a - b) (a² + ab + b²)
  • (aⁿ + bⁿ) (aⁿ - bⁿ) = a²ⁿ - b²ⁿ

Anonymous: plz unblock me bro :(
Anonymous: :( not talking with me.. ":(
Anonymous: plz unblock me
Anonymous: plz"
geniuss22: please unblock me too
geniuss22: u will not be my friend??
Answered by Stylishboyyyyyyy
5

\Large{\underline{\mathfrak{\underline{Solution :-}}}}

\sf (a {}^{2}  - b {}^{2} )(a {}^{2}  - ab + b {}^{2} )(a {}^{2}   +  ab + b {}^{2}) \\  \sf = (a - b)(a + b)(a {}^{2}  - ab + b {}^{2} )(a {}^{2}   +  ab + b {}^{2}) \\  \sf  =  \{(a - b)(a {}^{2}   +  ab + b {}^{2}) \} \{(a  +  b)(a {}^{2}   -   ab + b {}^{2}) \} \\  \sf  =  (a {}^{3}  - b {}^{3} )(a {}^{3} + b {}^{3} ) \\  \sf  = (a {}^{6} - b {}^{6})

____________________________________

\sf \large Identity \: Used :

1. (a² - b²) = (a + b)(a - b)

2. (a - b)(a² + ab + b²) = (a³ - b³)

3. (a + b)(a² - ab + b²) = (a³ + b³)

4. (a² + b²)(a² - b²) = a² - b²

____________________________________

Similar questions