Math, asked by debdebangshi7, 1 month ago

simplify = (a ^ 2)/((b - a)(c - a)) + (b ^ 2)/((c - b)(a - b)) + (c ^ 2)/((a - c)(b - c))​

Answers

Answered by Anonymous
0

Answer:

The given expression (a+b+c)

2

+(a−b+c)

2

+(a+b−c)

2

can be simplified as follows:

(a+b+c)

2

+(a−b+c)

2

+(a+b−c)

2

=(a

2

+b

2

+c

2

+2ab+2bc+2ca)+[a

2

+(−b)

2

+c

2

+2a(−b)+2(−b)c+2ca]

+[a

2

+b

2

+(−c)

2

+2ab+2b(−c)+2(−c)a]

(∵(a+b+c)

2

=a

2

+b

2

+c

2

+2ab+2bc+2ca)

=(a

2

+b

2

+c

2

+2ab+2bc+2ca)+(a

2

+b

2

+c

2

−2ab−2bc+2ca)

+(a

2

+b

2

+c

2

+2ab−2bc−2ca)

=3a

2

+3b

2

+3c

2

+2ab−2bc+2ca

=3(a

2

+b

2

+c

2

)−2(bc−ab−ac)

Hence, (a+b+c)

2

+(a−b+c)

2

+(a+b−c)

2

=3(a

2

+b

2

+c

2

)−2(bc−ab−ac)

Similar questions