Math, asked by shobharajput, 5 months ago

simplify: (a+2b+c)^2 + (a+2b-c)^2​

Answers

Answered by Anonymous
8

\blue{\bold{\underline{\underline{Answer:}}}}

 \:\:

 \green{\underline \bold{Given :}}

 \:\:

  •  \rm (a+2b+c)^2 + (a+2b-c)^2

 \:\:

 \red{\underline \bold{To \: Find:}}

 \:\:

  • To simplify  \rm (a+2b+c)^2 + (a+2b-c)^2

 \:\:

\large{\orange{\underline{\tt{Solution :-}}}}

 \:\:

 \underline{\bold{\texttt{We know that ,}}}

 \:\:

 \sf \dag \ (a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca

 \:\:

 \purple{\underline \bold{According \: to \: the \ question :}}

 \:\:

 \rm (a + 2b + c)^2 + (a + 2b -c)^2

 \:\:

It can be written as,

 \:\:

 \sf \longmapsto (a + 2b + c)^2 + (a + 2b + (-c))^2

 \:\:

Now,

 \:\:

 \sf \implies [a^2 + (2b)^2 + c^2 + 2a2b + 2c2b + 2ca] + [ a^2 + (2b)^2 + (-c)^2 + 2a2b + (-2c2b) + (-2ca)] </p><p></p><p>[tex] \:\:

 \sf \implies [a^2 + 4b^2 + c^2 + 4ab + 4cb + 2ca] + [ a^2 + 4b^2 + c^2 + 4ab - 4cb - 2ca]

 \:\:

 \underline{\bold{\texttt{Simplifying further by addition of like terms}}}

 \:\:

 \sf [2a^2 + 8b^2 + 2c^2 + 8ab ]

Answered by Anonymous
13

Answer :

›»› The expression is 2a² + 8ab + 8b² + 2c².

Given :

  • (a + 2b + c)² + (a + 2b - c)².

To Solve :

  • Simplify the expression.

Solution :

Let's start simplify the expression and understand the steps to get our final result of expression.

→ (a + 2b + c)² + (a + 2b - c)²

Expand an equation,

→ a² + 4ab + 2ac + 4b² + 4bc + c² + (a + 2b - c)²

Expand an equation,

→ a² + 4ab + 2ac + 4b² + 4bc + c² + a² + 4ab - 2ac + 4b² - 4bc + c²

Organize the similar terms,

→ (1 + 1)a² + (4 + 4)ab + (2 - 2)ac + (4 + 4)b² + (4 - 4)bc + (1 + 1)c²

Arrange the constant term,

→ 2a² + (4 + 4)ab + (2 - 2)ac + (4 + 4)b² + (4 - 4)bc + (1 + 1)c²

Arrange the constant term,

→ 2a² + 8ab + (2 - 2)ac + (4 + 4)b² + (4 - 4)bc + (1 + 1)c²

Organize the monomial expression andarrange the constant term,

→ 2a² + 8ab + 0ac + (4 + 4)b² + (4 - 4)bc + (1 + 1)c²

If we multiply a number by 0, it becomes 0,

→ 2a² + 8ab + 0 + (4 + 4)b² + (4 - 4)bc + (1 + 1)c²

Arrange the constant term,

→ 2a² + 8ab + 0 + 8b² + (4 - 4)bc + (1 + 1)c²

Organize the monomial expression and arrange the constant term,

→ 2a² + 8ab + 0 + 8b² + 0bc + (1 + 1)c²

If we multiply a number by 0, it becomes 0,

→ 2a² + 8ab + 0 + 8b² + 0 + (1 + 1)c²

Arrange the constant term,

→ 2a² + 8ab + 0 + 8b² + 0 + 2c²

0 does not change when we add or subtract,

2a² + 8ab + 8b² + 2c²

Hence, the expression is 2a² + 8ab + 8b² + 2c².

Similar questions