Simplify
a(a+b-c) + b(a-b+c) = c(-a+b+c)
Attachments:
Answers
Answered by
4
How do I simplify the boolean expression of (A+B) •(B+C) •(A+C)?
Let us first define some basic formulas of boolean algebra that we're gonna need for the solution
(X+X)=X
(X.X)=X
(X+1)=1
1.X=X
Now let us get to the problem
(A+B)(B+C)(A+C)
=(AB+AC+BC+BB)(A+C) {Multiplying the first two terms}
=(AB+AC+BC+B)(A+C) {Using formula 2}
=[AB+AC+B(C+1)](A+C) {Taking the common terms}
=(AB+B+AC)(A+C) {Using formulas 3 and 4}
=(AAB+ABC+AB+BC+AAC+ACC)
=(AB+ABC+AB+BC+AC+AC) {Using formula 2}
=(AB+BC+AC+ABC) {Using formula 1}
=[AB+BC+AC+ABC+ABC+ABC] {Using the inverse of formula 1}
=(AB+ABC+BC+ABC+AC+ABC)
=[AB(C+1)+BC(A+1)+AC(B+1)] {Taking the common terms}
=(AB+BC+AC) {Using formulas 3 and 4}
You can keep it in this form or change it a bit more to get
A(B+C)+BC
Similar questions