simplify (a+b-2c)²+(b+c-2a)²-(c+a-2b)²+2(a+b-2c)(b+c-2a)
Answers
Answer:
Step-by-step explanation
(a+b-2c)²+(b+c-2a)²-(c+a-2b)²+2(a+b-2c)(b+c-2a)
Let x= a+b-2c
Y=c+a-2c
Therefore
=x^2+y^2+2xy
=(x+y) ^2
=(a+b-2c+b+c-2a)^2
=(-a+2b-c)^2
Step-by-step Explanation:
By using the formula,
(x + y + z)² = x² + y² + z² + 2(xy + yz + xx)
The given questions is,
(a+b-2c)²+(b+c-2a)²-(c+a-2b)²+2(a+b-2c)(b+c-2a)
(a+b-2c)² = a² + b² + 4c² + 2a + 2b - 4c
(b+c-2a)² = 4a² + b² + c² - 4a + 2b + 2c
(c+a-2b)² = a² + 4b² + c² + 2a - 4b + 2c
2(a+b-2c)(b + c - 2a)= (2a + 2b - 4c)(b + c - 2a)
= 2ab + 2ac - 4a² + 2b² + 2bc - 4ab - 4bc -4c²+8ac
(a+b-2c)²+(b+c-2a)²-(c+a-2b)²+2(a+b-2c)(b+c-2a) =
a² + b² + 4c² + 2a + 2b - 4c + 4a² + b² + c² - 4a + 2b + 2c + a² + 4b² + c² + 2a - 4b + 2c + 2ab + 2ac - 4a² + 2b² + 2bc - 4ab - 4bc -4c²+8ac
= 2a² + 6b² - 2c² - 2(ab + bc - 4ac)