Math, asked by AvniPrasad6073, 1 year ago

simplify:(a+b)3-(a-b)3-6b(a2-b2)

Answers

Answered by Eashwar04
44

Have a look at this picture.

Hope this helps, mate!

If yes, please mark as the brainliest.

Attachments:
Answered by Swarup1998
4

(a+b)^{3}-(a-b)^{3}-6b(a^{2}-b^{2})=8b^{3}

Tips :

Before we solve the problem, we must know some algebraic identities:

  • (a+b)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3}
  • (a-b)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3}

Step-by-step explanation:

Step 1. Write down the given expression

\quad (a+b)^{3}-(a-b)^{3}-6b(a^{2}-b^{2})

Step 2. Use algebraic identities for (a+b)^{3} (a-b)^{3}

\quad (a^{3}+3a^{2}b+3ab^{2}+b^{3})-(a^{3}-3a^{2}b+3ab^{2}-b^{3})-6b(a^{2}-b^{2})

Step 3. Use (+)(+)=(+), (+)(-)=(-), (-)(+)=(-) and (-)(+)=(-) to open the braces and rearrange the terms

\quad a^{3}+3a^{2}b+3ab^{2}+b^{3}-a^{3}+3a^{2}b-3ab^{2}+b^{3}-6a^{2}b+6b^{3}

=a^{3}-a^{3}+b^{3}+b^{3}+6b^{3}+3a^{2}b+3a^{2}b-6a^{2}b+3ab^{2}-3ab^{2}

Step 4. Now calculate the terms using algebraic operations

\quad 8b^{3}

Thus, the required simplified form is 8b^{3}.

Similar questions