Math, asked by deeplinaborthakur, 3 months ago

simplify {(√a+x)-(√a-x)} ÷ {(√a+x) +(a-x) }​

Answers

Answered by anokhidangi48
0

Step-by-step explanation:

=

[

a

+x]−[

a

−x]

[

a

+x]+[

a

−x]

= \frac{[ \sqrt{a}+x]+[ \sqrt{a}-x]}{[ \sqrt{a}+x]-[ \sqrt{a}-x]} * \frac{[ \sqrt{a}+x]+[ \sqrt{a}-x]}{[ \sqrt{a}+x]+[ \sqrt{a}-x]}=

[

a

+x]−[

a

−x]

[

a

+x]+[

a

−x]

[

a

+x]+[

a

−x]

[

a

+x]+[

a

−x]

= \frac{ [ \sqrt{a}+x]+[ \sqrt{a}-x]^{2} }{[ \sqrt{a}+x]^{2} -[ \sqrt{a}-x]^{2} }=

[

a

+x]

2

−[

a

−x]

2

[

a

+x]+[

a

−x]

2

= \frac{ [ \sqrt{a}+x]^{2}+[ \sqrt{a}-x]^{2}+2[ \sqrt{a}+x][ \sqrt{a}-x] }{[ \sqrt{a}+x]^{2} -[ \sqrt{a}-x]^{2} }=

[

a

+x]

2

−[

a

−x]

2

[

a

+x]

2

+[

a

−x]

2

+2[

a

+x][

a

−x]

= \frac{4a}{4x \sqrt{a}}=

4x

a

4a

= \frac{ \sqrt{a} }{x}=

x

a

Now if

x= \frac{2ab}{1+ b^{2} }x=

1+b

2

2ab

then we get

= \frac{ \sqrt{a} }{2ab}*[1+ b^{2}]=

2ab

a

∗[1+b

2

]

= \frac{ [1+ b^{2}] }{2b \sqrt{a} }=

2b

a

[1+b

2

]

Similar questions