Math, asked by RaghavSarraf7, 3 months ago

Simplify:
(a²-b²)³ + (b²-c²)³ + (c²-a²)³/
(a-b)³ + (b-c)³ + (c-a)³​

Answers

Answered by jaswalmanish299
1

Answer:

let a

2

−b

2

=x

1

;b

2

−c

2

=y

1

;c

2

−a

2

=z

1

x

1

+y

1

+z

1

=0

⇒x

1

3

+y

1

3

+z

1

3

=3x

1

y

1

z

1

=3(a

2

−b

2

)(b

2

−c

2

)(c

2

−a

2

)

let a−b=x

2

;b−c=y

2

;c−a=z

2

x

2

+y

2

+z

2

=0

⇒x

2

3

+y

2

3

+z

2

3

=3x

2

y

2

z

2

=3(a−b)(b−c)(c−a)

So,

x

2

3

+y

2

3

+z

2

3

x

1

3

+y

1

3

+z

1

3

=(a+b)(b+c)(c+a)

Answered by likhitha2231
2

Answer:

we use the fact that if a+b+c=0 then a^3+b^3+c^3=abc.

(a^2-b^2)+(b^2-c^2)+(c^2+a^2)=0

also (a-b) + (b-c) + (c-a) =0

we assume that a≠b≠c.

hence

(a^2-b^2)^3 + (b^2-c^2)^3 + (c^2-a^2)^3 ÷ (a-b)^3 + bc)^3+ (c-a)^3

=3(a^2-b^2) (b^2-c^2) (c^2-a^2) / [3 (a-b) (b-c) (c-a)]

= (a+b) (b+c) (c+a)

therefore, a^2-b^2 = (a-b) (a+b) and similarly other terms.

Step-by-step explanation:

Mark me as brainlists

Similar questions