Math, asked by dey034802, 4 months ago

Simplify a⁴/ a² × a³​

Answers

Answered by KRRISHGUPTA123
3

Answer:

=a⁴/a² × a³

=a4-2 × a³

=a²× a³

=a2×3

=a⁶

Answered by pulakmath007
0

\displaystyle \sf   \frac{ {a}^{4} }{{a}^{2} }  \times  {a}^{3}  =  {a}^{5}

Given :

\displaystyle \sf   \frac{ {a}^{4} }{{a}^{2} }  \times  {a}^{3}

To find :

To simplify the expression

Formula Used :

We are aware of the formula on indices that :

 \sf{1. \:  \:  {a}^{m}  \times  {a}^{n} =  {a}^{m + n}  }

 \displaystyle \sf{2. \:  \:  \: \frac{ {a}^{m} }{ {a}^{n} }  =  {a}^{m - n} }

Solution :

Step 1 of 2 :

Write down the given expression

Here the given expression is

\displaystyle \sf   \frac{ {a}^{4} }{{a}^{2} }  \times  {a}^{3}

Step 2 of 2 :

Simplify the given expression

\displaystyle \sf   \frac{ {a}^{4} }{{a}^{2} }  \times  {a}^{3}

\displaystyle \sf    =  {a}^{(4 - 2)}   \times  {a}^{3} \:  \:  \: \bigg[ \:  \because \:\frac{ {a}^{m} }{ {a}^{n} }  =  {a}^{m - n}  \bigg]

\displaystyle \sf    =  {a}^{2}   \times  {a}^{3}

\displaystyle \sf    =  {a}^{(2 + 3)}   \:  \:  \: \bigg[ \:  \because \: {a}^{m}  \times  {a}^{n} =  {a}^{m + n}\bigg]

\displaystyle \sf   =  {a}^{5}

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. choose the correct alternative : 100¹⁰⁰ is equal to (a) 2¹⁰⁰ × 50¹⁰⁰ (b) 2¹⁰⁰ + 50¹⁰⁰ (c) 2² × 50⁵⁰ (d) 2² + 50⁵⁰

https://brainly.in/question/47883149

2. Using law of exponents, simplify (5²)³÷5³

https://brainly.in/question/36250730

#SPJ2

Similar questions