Math, asked by user09283, 10 months ago

Simplify abd express the result in the form of a+ib.
 {(\frac{4 \iota^{3} - \iota}{2\iota+ 1} )}^2

Answers

Answered by BrainlyConqueror0901
26

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{Complex\:number}=3+4\iota}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given :  }} \\  : \implies {(\frac{4 \iota^{3} - \iota}{2\iota+ 1} )}^2 \\  \\  \red{ \underline \bold{To \: Find :  }} \\  :  \implies  {(\frac{4 \iota^{3} - \iota}{2\iota+ 1} )}^2 \: in \: form \: of \: a +  \iota b = ?

• According to given question :

: \implies{(\frac{4 \iota^{3} - \iota}{2\iota+ 1} )}^2 \\ \\   \bold{\circ  \:  \:  { \iota}^{3}   =  -  \iota} \\  \\  : \implies  (\frac{4 \times  -  \iota -  \iota}{2 \iota + 1} )^{2}    \\ \\  :   \implies  (\frac{ - 5 \iota}{2 \iota + 1  })^{2} \\     \\  \circ \:  \: (a - b)^{2}  =  {a}^{2} +  {b}^{2}   - ab \\   \\   : \implies  \frac{25 { \iota}^{2} }{ {2}^{2}  \times {i}^{2}   +  {1}^{2}   +2 \times  2 \iota \times 1 }  \\ \\  \bold{ \circ  \:  \:  { \iota}^{2}  =  - 1} \\   \\    :\implies  \frac{25 \times  ( - 1)}{4\times  (- 1) + 1 + 4 \iota}  \\  \\   : \implies  \frac{ - 25}{ - 3 + 4 \iota}  \\ \\   \bold{\circ  \:  \: Rationalising} \\   \\  : \implies   \frac{ 25}{3- 4 \iota}  \times  \frac{3+ 4 \iota}{3 + 4 \iota}  \\  \\    : \implies  \frac{75 + 100 \iota}{  {(3})^{2}  - ( {4 \iota})^{2}  }  \\  \\    : \implies  \frac{75 + 100 \iota}{9 - 16 \times ( - 1)}  \\  \\   : \implies  \frac{75}{25}  +  \frac{100 \iota}{25}  \\  \\   \green{:   \implies  3 + 4 \iota} \\  \\   \green{\therefore \text{ Complex \: number} = 3 +  4\iota} \\  \\   \green{\therefore  \text{Re(z) = 3}} \\  \\ \green{\therefore  \text{Im(z) }= 4 \iota}

Answered by Anonymous
39

\huge{\underline{\mathfrak{\pink{Solution}}}}

(  { \frac{4 {i}^{3} - i }{2i + 1}) }^{2}  \\

 \mathbb \pink{as \: we \: know \: that \:  {i}^{3}  =  - i}

 \mathbb \blue{putting \: value \: of \:  {i}^{3}  \: in \: the \: question} \\

 {( \frac{ - 4i - i}{2i + 1}) }^{2}  \\

( { \frac{ - 5i}{2i + 1}) }^{2}  \\

(a-b)² = + - 2ab

 \frac{25 {i}^{2} }{4 {i}^{2} + 1 - 4i }  \\

Value of i² = - 1

 \frac{-25i}{ - 3 - 4i}  \\

Multiplying and dividing by -3+4i

 \frac{-25i}{ - 3 - 4i}  \times  \frac{ - 3  + 4i}{ - 3 + 4i}  \\

 \frac{ - 75i + 100 {i}^{2} }{25}  \\

 \frac{  75i + 100}{25}  \\

 \frac{  100}{25}  -  \frac{75i}{25}  \\

→ 4 + 3i

Re(z) = 4

im(z) = 3

Similar questions