Math, asked by manikamahi5, 6 hours ago

simplify and answer correctly, if you don't know the answer then pls don't post anything ​

Attachments:

Answers

Answered by MoodyCloud
14

Answer:

After simplifying we will get 0.

Step-by-step explanation:

We have ,

 \sf \dfrac{2}{ \sqrt{5}  +  \sqrt{3} }  +  \dfrac{1}{ \sqrt{3}  +  \sqrt{2} }  -  \dfrac{3}{ \sqrt{5}  +  \sqrt{2} }

  • First we will rationalise every term :

 \implies  \: \sf  \bigg(\dfrac{2 }{ \sqrt{5}  +  \sqrt{3} } \times  \dfrac{ \sqrt{5} -  \sqrt{3}  }{ \sqrt{5}  -  \sqrt{3} }    \bigg)+  \bigg( \dfrac{1}{ \sqrt{3} +  \sqrt{2} }  \times  \dfrac{ \sqrt{3}  -  \sqrt{2} }{ \sqrt{3}  -  \sqrt{2} }  \bigg) -  \bigg( \dfrac{3}{ \sqrt{5}  +  \sqrt{2} } \times  \dfrac{ \sqrt{5} -  \sqrt{2}  }{ \sqrt{5} -   \sqrt{2} }  \bigg)

  • Now solving it :

 \implies  \sf \dfrac{2  \times ( \sqrt{5} -  \sqrt{3} ) }{   {( \sqrt{5}) }^{2}    -  {( \sqrt{3} )}^{2} }  +  \dfrac{ \sqrt{3} -  \sqrt{2}  }{ ({\sqrt{3}}) ^{2}  -  (\sqrt{2})^{2} }  -  \dfrac{3 \times ( \sqrt{5}  -  \sqrt{2} )}{( \sqrt{5} )^{2} - (  {\sqrt{2} )}^{2}}

\implies  \sf \dfrac{2  \times ( \sqrt{5} -  \sqrt{3} ) }{ 5  -  3 }  +  \dfrac{ \sqrt{3} -  \sqrt{2}  }{3  -  2 }  -  \dfrac{3 \times ( \sqrt{5}  -  \sqrt{2} )}{5  - 2 }

\implies  \sf \dfrac{ \cancel{2 } \times ( \sqrt{5} -  \sqrt{3} ) }{ \cancel{2} }  +  \dfrac{ \sqrt{3} -  \sqrt{2}  }{1}  -  \dfrac{ \cancel{3} \times ( \sqrt{5}  -  \sqrt{2} )}{ \cancel{3} }

\implies  \sf \sqrt{5} -  \sqrt{3}   +  \sqrt{3} -  \sqrt{2}  -   ( \sqrt{5}  -  \sqrt{2} )

  • Opening the bracket :

\implies  \sf \sqrt{5} -  \sqrt{3}   +  \sqrt{3} -  \sqrt{2}  -   \sqrt{5}   +  \sqrt{2}

  • All numbers will get cancel :

 \implies  \pmb{0}

Hence, Simplified!

Answered by BrainlySparrow
51

Answer :

Answer after simplification will be 0.

Step-by-step explanation :

According to the question we are given,

\tt\dfrac{2}{ \sqrt{5} + \sqrt{3} } + \dfrac{1}{ \sqrt{3} + \sqrt{2} } - \dfrac{3}{ \sqrt{5} + \sqrt{2} }

First let's rationalise each term,

\tt \longrightarrow \: \bigg(\dfrac{2 }{ \sqrt{5} + \sqrt{3} } \times \dfrac{ \sqrt{5} - \sqrt{3} }{ \sqrt{5} - \sqrt{3} } \bigg)+ \bigg( \dfrac{1}{ \sqrt{3} + \sqrt{2} } \times \dfrac{ \sqrt{3} - \sqrt{2} }{ \sqrt{3} - \sqrt{2} } \bigg) - \bigg( \dfrac{3}{ \sqrt{5} + \sqrt{2} } \times \dfrac{ \sqrt{5} - \sqrt{2} }{ \sqrt{5 - \sqrt{2} } } \bigg)

Let's start solving!

\tt \longrightarrow \: \dfrac{2 \times ( \sqrt{5} - \sqrt{3} ) }{ {( \sqrt{5}) }^{2} - {( \sqrt{3} )}^{2} } + \dfrac{ \sqrt{3} - \sqrt{2} }{ ({\sqrt{3}}) ^{2} - (\sqrt{2})^{2} } - \dfrac{3 \times ( \sqrt{5} - \sqrt{2} )}{( \sqrt{5} )^{2} + ( {\sqrt{2} )}^{2}}

 \tt \longrightarrow \:  \dfrac{2 \times ( \sqrt{5} - \sqrt{3} ) }{ 5 - 3 } + \dfrac{ \sqrt{3} - \sqrt{2} }{3 - 2 } - \dfrac{3 \times ( \sqrt{5} - \sqrt{2} )}{5 + 2 }

\tt \longrightarrow \:  \dfrac{ \cancel{2 } \times ( \sqrt{5} - \sqrt{3} ) }{ \cancel{2} } + \dfrac{ \sqrt{3} - \sqrt{2} }{1} - \dfrac{ \cancel{3} \times ( \sqrt{5} - \sqrt{2} )}{ \cancel{3} }

  • Cancelling some terms and we get,

\tt \longrightarrow \: \sqrt{5} - \sqrt{3} + \sqrt{3} - \sqrt{2} - ( \sqrt{5} - \sqrt{2} )

  • Now open the brackets,

\tt \longrightarrow \: \sqrt{5} - \sqrt{3} + \sqrt{3} - \sqrt{2} - \sqrt{5} + \sqrt{2}

  • Numbers which have (-) and (+) and have same value like -5 and +5 will get cancelled.

\tt \longrightarrow \:  \cancel{\sqrt{5}}-  \cancel{\sqrt{3}} +  \cancel{\sqrt{3}} -  \cancel{\sqrt{2}} -  \cancel{\sqrt{5}} +  \cancel{\sqrt{2}}

 \bf \longrightarrow \:   \underline{\boxed{ \bf0}}

 \bf \longrightarrow \:   \underline{\boxed{ \bf \: Hence, Simplified!}}

Conclusion :-

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bullet \:   \sf \: Answer \:  =  \:  \bf0

Similar questions