simplify and expand (-1+√3i/2)^3
Answers
Answered by
3
Solution:
( -1 + √3i/2 )³
According to the identity
(a + b)³ = a³ + b³ + 3a²b + 3ab²
=> -1 + 3√3i³/8 + 3√3i/2 - 9i²/4
=> -1 - 3√3i/8 + 3√3i/2 - 9i²/4
=> -1 + 9/4 - ( 3√3i - 12√3i )/8
=> (-4+9)/4 - ( -9√3i)/8
=> 5/4 + 9√3i/8
Here,
Real part is 5/4 and imaginary part is 9√3i/8.
_____________________________
Extra information:
- i² = -1
- i³ = -i
- i⁴ = 1
Identities:
- (a - b)³ = a³ - 3a²b + 3ab² - b³
- a³ + b³ = (a + b)³ - 3ab (a + b)
- a³ - b³ = (a - b)³ + 3ab (a+b)
Answered by
0
Step-by-step explanation:
( -1+√3i)³÷2
°-1³+3(-1)²(√3i)+3(-1)(√3i)²+(√3i)³÷2............=(a³+3a²b+3ab²+b³) formula of (a+b)³
=1+3√3i-3×3i²+3√3i÷2
=1+3√3-9i²+3√3i÷2..........(i²=-1)formula
=1+3√3-9(-1)+3√3÷2
=1+3√3-9-3√3÷2.......(+or- )
=1+-9÷2
=8÷2
=4
Similar questions
English,
4 months ago
Math,
4 months ago
Math,
4 months ago
CBSE BOARD X,
9 months ago
Math,
1 year ago