Math, asked by mvmvidhyalaya222, 1 month ago

simplify and express each of the following in exponential form

Attachments:

Answers

Answered by BrainlyArnab
2

 \huge \boxed{ \blue{ {7}^{8}  \times  {13}^{3} }}

Step-by-step explanation:

 \dfrac{ {3}^{2}  \times  {7}^{13} \times  {13}^{6}  }{ {21}^{2} \times  {91}^{3}  }  \\  \\  =  >  \frac{ {3}^{2}  \times  {7}^{13}  \times  {13}^{6} }{ {(3 \times 7)}^{2}  \times  {(7 \times 13)}^{3} }  \\  \\  =  >   \frac{ {3}^{2} \times  {7}^{13}  \times  {13}^{6}  }{ {3}^{2} \times  {7}^{2}   \times  {7}^{3} \times  {13}^{3}  }  \\  \\   =  >  \frac{ {3}^{2} \times  {7}^{13}   \times  {13}^{6} }{ {3}^{2}  \times  {7}^{2 + 3} \times   {13}^{3} }  \\  \\   =  >  \frac{ {3}^{2}  \times  {7}^{13} \times  {13}^{6}  }{ {3}^{2}  \times  {7}^{5} \times  {13}^{3}  }  \\  \\  =  >  {3}^{2 - 2}  \times  {7}^{13 - 5}  \times  {13}^{6 - 3}  \\  \\  =  >  {3}^{0}  \times  {7}^{8}  \times  {13}^{3}  \\  \\  =  > 1 \times  {7}^{8}  \times  {13}^{3}  \\  \\   =  >   \underline \red{ {7}^{8}  \times  {13}^{3} }

So the answer is 7 × 13³.

Property used -

Properties about exponents,

when bases are same (here x) -

 {x}^{m}  \times  {x}^{n}  =  {x}^{m + n}  \\  {x}^{m}  \div  {x}^{n}  =  {x}^{m - n}  \\  {(x}^{m}  {)}^{n}  =  {x}^{m \times n}

when exponents are same,

 {x}^{ m}  \times  {y}^{m}  = (x \times y) {}^{m}

Answered by Anonymous
16

Answer

  • \bf{\green{{7}^{8} \times  {13}^{3}}}

To Find

  • The value of  \cfrac{ {3}^{2} \times{7}^{13} \times{13}^{6}}{ {21}^{2} \times  {91}^{3}  }

Step By Step Explanation

In this question we need to find the value of  \cfrac{ {3}^{2} \times{7}^{13} \times{13}^{6}}{ {21}^{2} \times  {91}^{3}  } .

We can easily find the value by using laws of exponents. So let's do it !!

Formula Used

 \dag \boxed{ \tt{x}^{m}  \times  {x}^{n} =  {x}^{m + n}}  \\  \\ \dag \boxed{ \tt \cfrac{ {x}^{m} }{ {x}^{n} }  =  {x}^{m - n}}  \\  \\  \dag  \boxed{\tt {x}^{m}  \times  {y}^{m}  =  {(xy)}^{m}}\\ \\  \dag\boxed {\tt {x}^{0}  = 1}

Solution

\longmapsto\tt\cfrac{ {3}^{2} \times{7}^{13} \times{13}^{6}}{ {21}^{2} \times  {91}^{3}  } \\  \\\longmapsto\tt  \cfrac{ {3}^{2} \times{7}^{13} \times{13}^{6}}{ {(3 \times 7)}^{2} \times  {(7 \times 13)}^{3}  } \\  \\\longmapsto\tt \cfrac{ {3}^{2} \times{7}^{13} \times{13}^{6}}{  {3}^{2} \times  {7}^{2}   \times  {7}^{3}  \times  {13}^{3}  } \\  \\\longmapsto\tt \cfrac{ {3}^{2} \times{7}^{13} \times{13}^{6}}{ {3}^{2} \times  {7}^{2 + 3}  \times  {13}^{3} } \\  \\\longmapsto\tt  \cfrac{ {3}^{2} \times{7}^{13} \times{13}^{6}}{ {3}^{2}  \times  {7}^{5}  \times  {13}^{3} } \\  \\  \longmapsto\tt{3}^{2 - 2}  \times  {7}^{13 - 5}  \times  {13}^{6 - 3}  \\  \\ \longmapsto\tt {3}^{0}  \times  {7}^{8} \times  {13}^{3}  \\  \\\longmapsto\tt 1 \times  {7}^{8} \times  {13}^{3}   \\  \\\longmapsto\bf{\green{ {7}^{8} \times  {13}^{3}}}

Therefore, answer = {7}^{8} \times  {13}^{3}

_____________________

Similar questions