Math, asked by IamSameerhii, 3 months ago

Simplify and express :-

In the attachment।​

Attachments:

Answers

Answered by amansharma264
17

EXPLANATION.

\sf \implies (1) = \dfrac{(10)^{2}  \ \times (15)^{3} }{(2)^{2}  \ \times 3 \ \times (5)^{5}  \ \times (6)^{4} }

As we know that,

In this type of we can simplify or expand the equation, we get.

\sf \implies \dfrac{10 \ \times 10 \times 15 \times 15 \times 15 }{2 \times 2 \times 3 \times 5 \times 5 \times 5 \times 5 \times 5 \times 6 \times 6 \times 6 \times 6}

\sf \implies \dfrac{10 \times 10 \times 15 \times 15 \times 15}{10 \times 10 \times 15 \times 5 \times 5 \times 6 \times 6 \times 6 \times 6}

\sf \implies \dfrac{3 \times 3}{6 \times 6 \times 6 \times 6}

\sf \implies \dfrac{1}{2 \times 2 \times 6 \times 6} = \dfrac{1}{144}

\sf \implies (1) = \dfrac{(10)^{2}  \ \times (15)^{3} }{(2)^{2}  \ \times 3 \ \times (5)^{5}  \ \times (6)^{4} } = \dfrac{1}{144}

\sf \implies (2) = \dfrac{(3)^{5} \times 25 \times (10)^{5} }{(5)^{7} \times (6)^{5} }

As we know that,

In this type of we can simplify or expand the equation, we get.

\sf \implies \dfrac{3 \times 3 \times 3 \times 3 \times 3 \times 25 \times 10 \times 10 \times 10 \times 10 \times 10}{5 \times 5 \times 5 \times 5 \times  5 \times 5 \times 5 \times 6 \times 6 \times 6 \times 6 \times 6}

\sf \implies \dfrac{3 \times 3 \times 3 \times 3 \times 3 \times 25 \times 100000}{25 \times 30 \times 30 \times 30 \times 30 \times 30 }

\sf \implies \dfrac{100000}{10 \times 10 \times 10 \times 10 \times 10} = 1.

\sf \implies (2) = \dfrac{(3)^{5} \times 25 \times (10)^{5} }{(5)^{7} \times (6)^{5} } = 1.

Answered by ItzBrainlyResponder
48

✰ Topic :- Exponents.

 \frak{ \maltese  \:  \: Given} \:  \begin{cases} \star \:  \:  \tt { \underline{ \textbf{ \textsf{(i) }}\:  \:  \dfrac{10 {}^{2} \times 15 {}^{3} }{2 {}^{2}  \times 3 \times 5  {}^{5} \times 6 {}^{4}   } }}\:  \:  \bigstar  \\ \\\star \:  \:   \tt \underline{ \textsf{ \textbf{(ii) \:  \: }} \dfrac{3 {}^{5} \times 25 \times 10 {}^{5}  }{5 {}^{7}  \times 6 {}^{5} } } \:  \:  \:  \:   \bigstar\end{cases} \\  \\

❍ Need To Do : Simplify and Express each of the following as a rational number.

 \\

 \maltese \:  \:  \large \underline{ \textsf{ \textbf{Required \: Solution}}} \:  :  \\  \\

 { \large{\star \:  \:  {\underline{ \frak{Solution }} \: _{ \textsf {\textbf{(number (1))}}}}}} \\  \\

 { \large\star} \:  \:  \tt { { \textbf{ \textsf{(i) }}\:  \:  \dfrac{10 {}^{2} \times 15 {}^{3} }{2 {}^{2}  \times 3 \times 5  {}^{5} \times 6 {}^{4}   } }} \\

 \dag\:  \:  \frak{ \:  \underline {Firstly, \:  expanding \:  the  \: equation \:  : }} \\

 :  \implies \tt \:  \frac{(2 \times 5) {}^{2} \times (3 \times 5) {}^{3} }{(2) {}^{2} \times3 \times   (5) {}^{5}  \times (2 \times 3) {}^{4} }   \\

 { :  \implies \tt  \dfrac{2 \times 2 \times 5 \times 5 \times 3 \times 3 \times 3 \times 5 \times 5 \times 5}{2 \times 2 \times 3 \times 5 \times 5 \times 5 \times 5 \times 5 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3} } \\

 \dag \:  \:  \frak{ \:  \underline {Secondly, \: cancelling \: them \:  : }} \\

 { :  \implies \tt  \dfrac{ \cancel{2 \times 2} \times{ \cancel{ 5 \times 5}} \times\cancel{ 3 \times 3 \times 3} \times \cancel{5 \times 5 \times 5}}{\cancel{2 \times 2 }\times 3 \times { \cancel{5 \times 5 \times 5 \times 5 \times 5}} \times 2 \times 2 \times 2 \times 2 \times\cancel{ 3 \times 3 \times 3 }\times 3} } \\

 \dag \:  \:  \frak{ \:  \underline {Thirdly, \:  multiplying \:  the \:  denominators \:  :}} \\

 :  \implies \tt \:  \frac{1}{2 \times 2 \times 2 \times 2 \times3 \times 3}  \\

 :  \implies \tt \:  \frac{1}{16 \times 9}  \\

\underline{ \underline{ \boxed {:  \longrightarrow {\bf \:  \frac{1}{144} }}}} \:  \:  \bigstar

 \\

 { \large{\star \:  \:  {\underline{ \frak{Solution }} \: _{ \textsf {\textbf{(number (2))}}}}}} \\  \\

{ \large \star} \:  \:   \tt { \textsf{ \textbf{(ii) \:  \: }} \dfrac{3 {}^{5} \times 25 \times 10 {}^{5}  }{5 {}^{7}  \times 6 {}^{5} } }

 \dag\:  \:  \frak{ \:  \underline {Firstly, \:  expanding \:  the  \: equation \:  : }} \\

 :  \implies \tt \:   \frac{(3 ){}^{5} \times 5 \times 5 \times (2 \times 5) {}^{5}  }{(5) {}^{7}  \times (2 \times 3) {}^{5} } \\

 :  \implies \tt \:  \frac{3 \times 3 \times 3 \times 3 \times 3 \times 5 \times 5 \times 2 \times 2 \times 2 \times 2 \times 2 \times 5 \times 5 \times 5 \times 5 \times 5}{5 \times 5 \times 5 \times 5 \times 5 \times 5 \times 5 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3 \times 3}  \\

 \dag \:  \:  \frak{ \:  \underline {Secondly, \: cancelling \: them \:  : }} \\

 :  \implies \tt \:  \frac{ \cancel{3 \times 3 \times 3 \times 3 \times 3} \times { \cancel{5 \times 5}} \times { \cancel{2 \times 2 \times 2 \times 2 \times 2}} \times{ \cancel{ 5 \times 5 \times 5 \times 5 \times 5}}}{{ \cancel{5 \times 5 \times 5 \times 5 \times 5 \times 5 \times 5}} \times{ \cancel{ 2 \times 2 \times 2 \times 2 \times 2 }}\times { \cancel{3 \times 3 \times 3 \times 3 \times 3}}}  \\

\underline{ \underline{ \boxed {:  \longrightarrow {\bf \:  1}}}} \:  \:  \bigstar

Similar questions