Math, asked by mteverest466, 1 year ago

simplify and Express the answer with positive exponent

Attachments:

Answers

Answered by MaheswariS
85

\textbf{Given:}

[\sqrt[3]{x^4y}{\times}\dfrac{1}{\sqrt[3]{xy^7}}]^{-4}

\textbf{To find:}

\text{Simplified form of}\;\;[\sqrt[3]{x^4}{\times}\dfrac{1}{\sqrt[3]{xy^7}}]^{-4}

\textbf{Solution:}

\text{Consider,}

[\sqrt[3]{x^4y}{\times}\dfrac{1}{\sqrt[3]{xy^7}}]^{-4}

=[\dfrac{\sqrt[3]{x^4y}}{\sqrt[3]{xy^7}}]^{-4}

=[\sqrt[3]{\dfrac{x^4y}{xy^7}}]^{-4}

=[\sqrt[3]{\dfrac{x^3}{y^6}}]^{-4}

=[\sqrt[3]{(\dfrac{x}{y^2})^3}]^{-4}

=[\dfrac{x}{y^2}]^{-4}

=\dfrac{x^{-4}}{y^{-8}}

=\dfrac{\dfrac{1}{x^4}}{\dfrac{1}{y^8}}

=\dfrac{1}{x^4}{\times}\dfrac{y^8}{1}

=\dfrac{y^8}{x^4}

\textbf{Answer:}

\boxed{\bf\,[\sqrt[3]{x^4y}{\times}\dfrac{1}{\sqrt[3]{xy^7}}]^{-4}=\dfrac{y^8}{x^4}}

Answered by shruti072370
36

For answer refer to the attachment

Hope its help please mark me as brainliest

Attachments:
Similar questions