Math, asked by ranjuranju3617, 4 months ago

Simplify and express the result in power notation with positive exponent.
(3^-7÷3^-9)×3-4​

Answers

Answered by MrImpeccable
12

{\huge{\underline{\boxed{\red{\mathcal{Answer}}}}}}

To Simplify:

  • (3^-7÷3^-9)×3^-4  \\

Solution:

 \implies \dfrac{3^{-7}}{3^{-9}} \times 3^{-4} \\ \\ \implies 3^{-7 - (-9) + (-4)} \\ \\ \implies 3^{-7 + 9 - 4} \\ \\ \implies 3^{-2} \\ \\ \bold {\implies \dfrac{1}{3^2}} \\

Concept Used:

  •  a^m \times a^n = a^{m+n}
  •  \dfrac{a^m}{a^n} = a^{m-n} \\

Learn More:

 \begin{gathered}\boxed{\begin{minipage}{5 cm}\bf{\dag}\:\:\underline{\text{Law of Exponents :}}\\\\\bigstar\:\:\sf\dfrac{a^m}{a^n} = a^{m - n}\\\\\bigstar\:\:\sf{(a^m)^n = a^{mn}}\\\\\bigstar\:\:\sf(a^m)(a^n) = a^{m + n}\\\\\bigstar\:\:\sf\dfrac{1}{a^n} = a^{-n}\\\\\bigstar\:\:\sf\sqrt[\sf n]{\sf a} = (a)^{\dfrac{1}{n}}\end{minipage}}\end{gathered}

Similar questions