Math, asked by Udaykingrani, 1 month ago

simplify and express the result in power notation with positive exponent​

Attachments:

Answers

Answered by NewGeneEinstein
1

Solution:-1

\\ \sf\longmapsto 7^5\times 7^3\times 7^{-4}

\\ \sf\longmapsto 7^{5+3+(-4)}

\\ \sf\longmapsto 7^{8-4}

\\ \sf\longmapsto 7^4

Solution:-2

\\ \sf\longmapsto 6^{11}\times 6^3\times 6^{-5}

\\ \sf\longmapsto 6^{11+3+(-5)}

\\ \sf\longmapsto 6^{14-5}

\\ \sf\longmapsto 6^9

Solution:-3

\\ \sf\longmapsto (-4)^{-2}\times 5^{-3}\times 5^{-4}

\\ \sf\longmapsto (\dfrac{1}{4})^2\times 5^{-3-4}

\\ \sf\longmapsto \dfrac{1}{16}\times 5^{-7}

Solution:-4

\\ \sf\longmapsto (\dfrac{5}{9})^{-2}\times (\dfrac{3}{5})^{-3}\times (\dfrac{3}{5})^{0}

\\ \sf\longmapsto (\dfrac{9}{5})^2\times (\dfrac{5}{3})^3\times 1

\\ \sf\longmapsto \dfrac{9^2}{5^2}\times \dfrac{5^3}{3^3}

Answered by TrustedAnswerer19
63

Answer:

a)

 \frac{ {7}^{5}  \times  {7}^{3} }{ {7}^{ - 4} }  \\  =  \frac{ {7}^{5 + 3} }{ {7}^{ - 4} }  \\  =  {7}^{5 + 3 - ( - 4)}  \\  =  {7}^{5 + 3 + 4}  \\ =   {7}^{12}

b)

 {6}^{11}  \times  {6}^{ 3}  \times  {6}^{ - 5}  \\  =  {6}^{11 + 3   + ( - 5)}  \\  =  {6}^{11 + 3 - 5}  \\  =  {6}^{9}

c)

 {( - 4)}^{ - 2}  \times  {5}^{ - 3}  \times  {5}^{ - 4}  \\  =  \frac{1}{ {( - 4)}^{2} }  \times  {5}^{ - 3 - 4}  \\  =  \frac{1}{16}  \times  {5}^{ - 7}\\=\:\frac{1}{16} \times\frac{1}{5^7}

d)

 {( \frac{5}{9} )}^{ - 2}  \times  {( \frac{3}{5} })^{ - 3}  \times  { (\frac{3}{5} })^{0}  \\  =  {( \frac{9}{5} )}^{2}  \times  {( \frac{5}{3} })^{3}  \times 1 \\  =  \frac{ {9}^{2} }{ {5}^{2} }  \times  \frac{ {5}^{3} }{ {3}^{3} }  \\  =  \frac{ ({3}^{2} )^{2} }{ {5}^{2} }  \times  \frac{ {5}^{3} }{ {3}^{3} }  \\  =  \frac{ {3}^{4} }{ {5}^{2} }  \times  \frac{ {5}^{3} }{ {3}^{3} }  \\  =  {3}^{4 - 3}  \times  {5}^{3 - 2}  \\  =  {3}^{1}  \times  {5}^{1}  \\  = 3 \times 5 \\  = 15

Note:

  >  {a}^{m}  \times  {a}^{n}  =  {a}^{m + n}  \\  \\  >  \frac{ {a}^{m} }{ {a}^{n} }  =  {a}^{m - n}\\\\>\:a^0\:=\:1

Similar questions