Math, asked by spsingh001, 1 year ago

SIMPLIFY AND EXPRESS THE RESULT IN THE SIMPLEST FORM ...




can u plz give me answer with attachment thanking:-)​

Attachments:

Answers

Answered by Anonymous
14

Solution :-

First of all we should know about the factors of the given numbers :-

25 = 5 × 5 = 5²

243 = 3 × 3 × 3 × 3 × 3 = 3⁵

16 = 2 × 2 × 2 × 2 = 2⁴

8 = 2 × 2 × 2 = 2³

Now we should also know these :-

 x^a = x \times x \times x ...\sf{(upto\: a\: times)}

 x^{\frac{1}{b}} = \sqrt[b]{x}

 {x}^{\frac{a}{b}} = (\sqrt[b]{x})^a

Now solving the question :-

 \dfrac{ (25)^{3/2} \times (243)^{2/5}}{ (16)^{5/4}  \times (8)^{4/3}}

 = \dfrac{ (\sqrt[2]{25})^3 \times (\sqrt[5]{243})^2 }{(\sqrt[4]{16})^5 \times (\sqrt[3]{8})^4 }

 = \dfrac{(\sqrt[2]{5^2})^3 \times (\sqrt[5]{3^5})^2 }{(\sqrt[4]{2^4})^5 \times (\sqrt[3]{2^3})^4 }

 =\dfrac{5^3 \times 3^2 }{2^5 \times 2^4 }

 = \dfrac{ 125 \times 9 }{32 \times 16}

 =\dfrac{ 1125}{512}


spsingh001: suprb
Anonymous: ^_^ ,,
Answered by kiranrajputhld
1

Step-by-step explanation:

Express the result in simplest form:

Similar questions