Math, asked by mksingh24, 9 months ago

simplify and express the results as a rational numbers in its lowest form ​

Attachments:

Answers

Answered by prince5132
4

GIVEN :-

 \to \sf \:   \dfrac{0.4 \times 0.04 \times 0.005}{0.1 \times 10 \times 0.001}  -  \dfrac{1}{2}  +  \dfrac{1}{5}

TO FIND :-

\to \sf \: the \: value \: of \: \dfrac{0.4 \times 0.04 \times 0.005}{0.1 \times 10 \times 0.001}  -  \dfrac{1}{2}  +  \dfrac{1}{5}

SOLUTION :-

\to \sf \:   \dfrac{0.4 \times 0.04 \times 0.005}{0.1 \times 10 \times 0.001}  -  \dfrac{1}{2}  +  \dfrac{1}{5}  \\  \\ \\ \to \sf \dfrac{0.4}{0.1}  \times  \dfrac{0.04}{10}  \times  \dfrac{0.005}{0.001}  -  \dfrac{1}{2}  +  \dfrac{1}{5}  \\  \\ \\ \to \sf \:  \dfrac{0.4 \times 10}{0.1 \times 10}  \times  \dfrac{0.04 \times 100}{10 \times 100}  \times  \dfrac{0.005 \times 1000}{0.001 \times 1000}   -  \dfrac{1}{2}  +  \dfrac{1}{5}  \\  \\ \\ \to \sf \:  \dfrac{4}{1}  \times  \dfrac{4}{1000}  \times  \dfrac{5}{1}  -  \dfrac{1}{2}  +  \dfrac{1}{5}  \\  \\ \\ \to \sf \:  \dfrac{8 \cancel0}{100 \cancel0}  -  \dfrac{1}{2}  +  \dfrac{1}{5}  \\  \\ \\ \to \sf \:  \dfrac{8}{100}  -  \dfrac{1}{2}  +  \dfrac{1}{5}

☯ Taking L.C.M = 100.

 \to \sf \:  \dfrac{8}{100}    +  \dfrac{1 \times 20}{5 \times 20}  -  \dfrac{1 \times 50}{2 \times 50}  \\  \\ \\ \to \sf \:  \dfrac{8 + 20 - 50}{100}  \\  \\ \\ \to \sf \:  \dfrac{28 - 50}{100}  \\  \\ \\ \to \sf \:  \frac{ \cancel{ - 22}}{ \cancel{100}}  \\ \\ \\ \to \boxed{ \red{ \bf\dfrac{ - 11}{50}}}

Hence the required answer is-11/50

Similar questions