Math, asked by pratigyadwivedi1974, 9 months ago

Simplify and give answer in positive index (5)^-4 × (4/5)^-4×2^8​

Answers

Answered by Nikhil0204
11

\huge{\mathbb{\underline{\green{ANSWER}}}}

 {(5)}^{ - 4}  \times  {( \frac{4}{5} )}^{ - 4}  \times  {2}^{8}  \\  =  >  \frac{1}{5 \times 5 \times 5 \times 5}  \times  \frac{5 \times 5 \times 5 \times 5}{4 \times 4 \times 4 \times 4}  \times 256 \\  =  >   \frac{1}{256}  \times 256 \\  =  > 1

HOPE THIS HELPS YOU!!!!!!!!!

PLEASE MARK IT AS BRAINLIST!!!!!!!!!!!!!!

❤️#STAY HOME #STAY SAFE❤️

Answered by Anonymous
5

Solution :

 \sf \implies {(5)}^{ - 4} \times  (\frac{4}{5})^{ - 4}  \times {(2)}^{8} \\  \\\sf \implies {(5)}^{ - 4} \times \bigg (\frac{4}{5}\bigg)^{ - 4}  \times { \bigg (({2)}^{ - 2}\bigg) }^{ - 4} \\  \\\sf \implies  \bigg(5 \times  \frac{4}{{5}} \times  \frac{1}{4} \bigg)^{ - 4} \\\\ \sf \implies ({1)}^{ - 4} \\  \\\sf \implies \frac{1}{1^{4} } \\ \\ \Large \implies\sf1

Identity used :

 \large \implies \boxed{ \sf{a}^{m} \times  {b}^{m} =  {ab}^{m}}

Other important identities :

 \large\implies \sf {a}^{m} \times  {a}^{n} =  {a}^{m + n} \\  \\ \large\implies \sf{a}^{m} \div {a}^{n} =  {a}^{m - n} \\  \\ \large\implies \sf {a}^{m} =  {a}^{n}  \:  \:  \:  \:  \:  \:  \: [ m = n]

Similar questions