Math, asked by CuteButPyscho, 1 month ago

simplify and solve the following equations :
a) \:  \: 2( \frac{2}{3}x - 9) + \frac{5}{2} x - 4 =  - 1
b) \:  \: x =  \frac{5}{4} (x + 9)
c) \:  \: - 5.5c(c - 2.25) =  - 1.1c(5c - 8.7) - 1.5

please itz important
I don't wanna be rude but ❌no spam or else will be❌ reported

Answers

Answered by khyatiRamteke
2

Answer:

Use grouping to factorise the numerator and take out the common factor \(ax\) in the denominator\[\frac{\left(ax - ab\right) + \left(x - b\right)}{a{x}^{2} - abx} = \frac{a\left(x - b\right) + \left(x - b\right)}{ax\left(x - b\right)}\]

Take out common factor \(\left(x-b\right)\) in the numerator\[=\frac{\left(x - b\right)\left(a + 1\right)}{ax\left(x - b\right)}\]

Cancel the common factor in the numerator and the denominator to give the final answer\[= \frac{a + 1}{ax}\]

hope it's helpful for you

fol low me

Answered by Salmonpanna2022
1

Step-by-step explanation:

 \bf \underline{Solution-} \\

 \bf{Q.(i )} \:  \: 2 \bigg( \frac{2}{3} x - 9 \bigg) +  \frac{5}{2} x - 4 =  - 1 \\

  \rm\longrightarrow \: 2 \times \bigg( \frac{2}{3}  \bigg)x - 18 +  \frac{5}{2} x - 4 =  - 1 \\

\rm\longrightarrow \: \frac{2 \times 2}{3} x - 18 +  \frac{5}{2} x - 4 =  - 1 \\

\rm\longrightarrow \: \frac{4}{3} x - 18 +  \frac{5}{2}x - 4 =  - 1 \\

Combine (4/3)x and (5/2)x to get (23/6)x.

\rm\longrightarrow \: \frac{23}{6} x - 18 - 4 =  - 1 \\

\rm\longrightarrow \: \frac{23}{6} x - 22 =  - 1 \\

\rm\longrightarrow \: \frac{23}{6} x =  - 1 + 22 \\

 \rm\longrightarrow \:\frac{23}{6} x = 21 \\

Multiply both sides by 6/23, the reciprocal of 23/6.

\rm\longrightarrow \:x = 21 \times  \bigg( \frac{6}{23}  \bigg) \\

Express 21*(6/23) as a single fraction.

\rm\longrightarrow \:x = \frac{21 \times 6}{23}  \\

\rm\longrightarrow \:x =  \frac{126}{23}  = 5 \frac{11}{23}  \bf \: ans. \\  \\

≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡

 \bf{Q.(ii)} \:  \: x =  \frac{5}{4} (x + 9) \\

 \rm\longrightarrow \:x =  \frac{5}{4} x +  \frac{5}{4}  \times 9 \\

Express (5/4)*9 as a single fraction.

 \rm\longrightarrow \:x =  \frac{5}{4} x +  \frac{5 \times 9}{4}  \\

 \rm\longrightarrow \:x =  \frac{5}{4} x +  \frac{45}{4}  \\

 \rm\longrightarrow \:x -  \frac{5}{4} x  =  \frac{45}{4}  \\

 \rm\longrightarrow \: \frac{ - 1}{4} x =  \frac{45}{4}  \\

 \rm\longrightarrow \:x =  \frac{45}{4} ( - 4) \\

 \rm\longrightarrow \:x =  \frac{45( - 4)}{4}  \\

 \rm\longrightarrow \:x =  \frac{ - 180}{4}  \\

 \rm\longrightarrow \:x =  - 45 \bf \: ans. \\

 \underline{ \bf \therefore \: value \: of \: x \: is \:  - 45.} \\

≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡

 \bf{Q.(iii)} \:  \:  - 5.5c(c.2.25) =  - 1.1c(5c - 8.7) - 1.5 \\

 \rm \longrightarrow \:  - 5.5 {c}^{2}  + 12.375c =  - 1.1c(5c - 8.7) - 1.5 \\

 \rm \longrightarrow \:  - 5.5 {c}^{2}  + 12.375c =  - 5.5 {c}^{2}  + 9.57c - 1.5 \\

  \rm \longrightarrow \:   \cancel{- 5.5 {c}^{2}}  + 12.375c  \cancel{+ 5.5 {c}^{2}}  = 9.57c - 1.5 \\

 \rm \longrightarrow \: 12.375c = 9.57c - 1.5 \\

 \rm \longrightarrow \: 12.375c  - 9.57c =  - 1.5 \\

 \rm \longrightarrow \: 2.805c =  - 1.5 \\

 \rm \longrightarrow \: c =  \frac{1.5}{2.805}  \\

Expand -1.5/2.805 by multiplying both numerator and the denominator by 1000.

 \rm \longrightarrow \: c =  \frac{ - 1500}{2805}  \\

Reduce the fraction -1500/2805 to lowest terms by extracting and cancaling out 15.

 \rm \longrightarrow \: c =  \frac{100}{187}   = 0.534759358 \\

  \underline{\bf{Hence, the \:  reqrd  \: value \:  of  \: c  \: is \:  0.534759358}} \\

Similar questions