Math, asked by nayakyashi, 1 year ago

Simplify and write in exponential form
((-2)^3)^2+5^-3÷5^-5-(-1/2)^0

Answers

Answered by EmmaCarlos
24

((-2)^3)^2+5^-3÷5^-5-(-1/2)^0

=(-8)^2+5^((-3-(-5))-1

=64+5^(-3+5)-1

=64+5^2-1

=64+25-1

=88

Answered by pinquancaro
24

The required form is ((-2)^3)^2+5^{-3}\div 5^{-5}-(-\frac{1}{2})^0=(88)^1

Step-by-step explanation:

Given : Expression ((-2)^3)^2+5^{-3}\div 5^{-5}-(-\frac{1}{2})^0</p><p>

To find : Simplify the expression ?

Solution :

((-2)^3)^2+5^{-3}\div 5^{-5}-(-\frac{1}{2})^0

=(-8)^2+5^{-3-(-5)}-1

=64+5^(-3+5)-1

=64+5^2-1

=64+25-1

=88

In exponential form, =(88)^1

Therefore, the required form is ((-2)^3)^2+5^{-3}\div 5^{-5}-(-\frac{1}{2})^0=(88)^1

#Learn more

Simplify: √(3+2√2)

https://brainly.in/question/12222361

Similar questions