Math, asked by hd20671, 19 days ago

simplify and write the answer in exponential form​

Attachments:

Answers

Answered by riyars080102
1

Step-by-step explanation:

using identities formula,

{a}^{ - m}  =   \frac{1}{ {a}^{m} }

({6}^{ - 4}  \div  {6}^{ - 3}) \times   {(\frac{6}{7}})^{3} \times  {6}^{ - 2}

 = ( \frac{1}{{6}^{4}}   \div  \frac{1}{{6}^{3}} ) \times   {(\frac{6}{7}})^{3} \times  { \frac{1}{6}^{2}}  \\  \\  =  ( \frac{1}{{6}^{4}}   \ \times   \ \: {{6}^{3}} ) \times   {(\frac{6}{7}})^{3} \times  {  { (\frac{1}{6})}^{2} }

 =  \frac{1 \times  {6}^{3} \times {6}^{3} \:  \times 1 }{ {6}^{4} \times  {7}^{3} \times   {6}^{2}  }  \\  \\  =  \frac{ {6}^{3 + 3} }{ {6}^{4 + 2} \times  {7}^{3}}

 =  \frac{ {6}^{6} }{ {6}^{6}  \times {7}^{3} }  =  \frac{1}{ {7}^{3} }  \\  \\  =  \frac{1}{343}

Similar questions