Math, asked by lukendrimajhi, 1 day ago

Simplify and write the answer in the simplest from​

Attachments:

Answers

Answered by kamalhajare543
20

Answer:

Question 1

\bigg[  \frac{1}{2}  +  \frac{3}{8} \bigg] \times \bigg[ \frac{7}{3}  +  \frac{1}{6}  \bigg]

  • \bigg[  \frac{1}{2}  +  \frac{3}{8} \bigg] \times \bigg[ \frac{7}{3}  +  \frac{1}{6}  \bigg]

  • \bigg[  \frac{4}{10} \bigg] \times \bigg[ \frac{8}{9}   \bigg]

  • \bigg[  \frac{4}{10} \bigg] \times \bigg[ \frac{8}{9}   \bigg] =  \frac{32}{90}

 \cancel\frac{32}{90}  =   \bold{\frac{16}{45} }

Answered by GraceS
24

\sf\huge\bold{Answer:}

\fbox{Solution:1}

Given :

 \tt \bigg( \frac{1}{2} +  \frac{3}{8}  \bigg) \times   \bigg( \frac{7}{3}  +  \frac{1}{6}  \bigg) \\

To find :

Simplest form

Solution :

 \bf \red{ \bigg( \frac{1}{2} +  \frac{3}{8}  \bigg) \times   \bigg( \frac{7}{3}  +  \frac{1}{6}  \bigg) }\\

 \tt \bigg(  \frac{8  \times 1 + 3 \times 2}{8 \times 2}  \bigg) \times   \bigg( \frac{7 \times 6 + 1 \times 3}{3 \times 6}    \bigg) \\

 =  \tt \bigg(  \frac{8   + 6}{16}  \bigg) \times   \bigg( \frac{42 + 3}{18}    \bigg) \\

 =  \tt \bigg(  \frac{14}{16}  \bigg) \times   \bigg( \frac{45}{18}    \bigg)  \\

 =  \tt    \cancel\frac{14}{16}   \times     \cancel\frac{45}{18}      \\

 \tt \:  =  \frac{7}{8}   \times  \frac{13}{9}  \\

 \tt\  =  \frac{91}{72}  \\

 \boxed{  \boxed{\tt\purple{   \frac{91}{72} }} }

\fbox{Solution:2}

Given :

 \tt \bigg(  - \frac{ 4}{9} +  \frac{2}{3}  \bigg) \times   \bigg( \frac{11}{15}   -   \frac{2}{5}  \bigg) \\

To find :

Simplest form

Solution :

 \bf \red{ \bigg(  - \frac{ 4}{9} +  \frac{2}{3}  \bigg) \times   \bigg( \frac{11}{15}   -   \frac{2}{5}  \bigg)} \\

 \tt \bigg(   \frac{ -  4 \times3 + 2 \times 9 }{9 \times 3}   \bigg) \times   \bigg( \frac{11 \times 5 - 2 \times 15}{15 \times 5}   \bigg) \\

 =  \tt \bigg(   \frac{ - 12 + 18 }{21}   \bigg) \times   \bigg( \frac{55 - 30}{75}   \bigg) \\

 =  \tt \bigg(   \frac{ 6 }{21}   \bigg) \times   \bigg( \frac{20}{75}   \bigg) \\

 =  \tt \cancel   \frac{ 6 }{21}   \times     \cancel\frac{20}{75}    \\

 \tt\  =  \frac{2}{7}  \times  \frac{4}{15}  \\

 \tt =  \frac{8}{85}  \\

\boxed{  \boxed{\tt\purple{   \frac{8}{85} }} }

\fbox{Solution:3}

Given :

 \tt \bigg(  \frac{ 5}{8}  -   \frac{7}{16}  \bigg) \times   \bigg( \frac{1}{3}    +    \frac{11}{6}  -  \frac{5}{18}  \bigg) \\

To find :

Simplest form

Solution :

 \bf \red{\bigg(  \frac{ 5}{8}  -   \frac{7}{16}  \bigg) \times   \bigg( \frac{1}{3}    +    \frac{11}{6}  -  \frac{5}{18}  \bigg)} \\

 =  \tt \bigg(  \frac{ 5 \times 2 - 7 \times 1}{16}   \bigg) \times   \bigg( \frac{1 \times 6 + 11 \times 3 - 5 \times 1}{18 }   \bigg) \\

   =  \tt \bigg(  \frac{ 10 - 7 }{16}   \bigg) \times   \bigg( \frac{ 6 + 33 - 5 }{18 }   \bigg) \\

=  \tt \bigg(  \frac{ 3}{16}   \bigg) \times   \bigg( \frac{ 34}{18 }   \bigg) \\

 \tt =  \frac{ 3}{16}   \times   \cancel\frac{ 34}{18 }   \\

 \tt =  \frac{ \cancel 3}{16}   \times  \frac{ 17}{ \cancel 9 }   \\

 \tt\  =  \frac{ 1}{16}   \times   \frac{ 17}{3 }   \\

 \tt\  =   \frac{ 17}{48 }   \\

\boxed{  \boxed{\tt\purple{   \frac{17}{48} }} }

\fbox{Solution:4}

Given :

 \tt \bigg(  \frac{ 2}{5}  -   \frac{1}{10}   + \frac{7}{15}  \bigg)   \times   \bigg( \frac{1}{2}     -     \frac{9}{16}   +  \frac{3}{8}  \bigg) \\

To find :

Simplest form

Solution :

\bf \red{ \bigg(  \frac{ 2}{5}  -   \frac{1}{10}   + \frac{7}{15}  \bigg)   \times   \bigg( \frac{1}{2}     -     \frac{9}{16}   +  \frac{3}{8}  \bigg)} \\

 = \tt \bigg(  \frac{ 2 \times 3 - 1 \times 2 + 7 \times 1}{15}  \bigg)   \times   \bigg( \frac{1 \times 8 - 9 \times 1 + 2 \times 3}{16}    \bigg) \\

 = \tt \bigg(  \frac{ 6 - 2 + 7}{15}  \bigg)   \times   \bigg( \frac{ 8 - 9 + 6}{16}    \bigg) \\

= \tt    \frac{ 11}{ \cancel15}    \times    \frac{  \cancel5}{16}     \\

= \tt    \frac{ 11}{ 3}    \times    \frac{  1}{16}     \\

= \tt    \frac{ 11}{ 48}        \\

\boxed{  \boxed{\tt\purple{   \frac{11}{48} }} }

Similar questions