Math, asked by pushpanande734, 6 hours ago

simplify:
answer-
 \frac{81}{16}

Attachments:

Answers

Answered by Anonymous
6

Answer:

\bold{\red{{\red{\boxed{\bf{ \dfrac{81}{16}}}}}}}

Step-by-step explanation:

\displaystyle{\Bigg(\frac{27}{8}}\Bigg)^{\frac{1}{3}} \times \Bigg[\bigg(\frac{243}{32}\bigg)^\frac{1}{5} \div \bigg(\frac{2}{3}\bigg)^2\Bigg]

 = \displaystyle{\Bigg(\frac{27}{8}}\Bigg)^{\frac{1}{3}}\times \Bigg[\bigg(\frac{243}{32}\bigg)^\frac{1}{5} \times \bigg(\frac{3}{2}\bigg)^2\Bigg]

= \displaystyle{\Bigg(\frac{27}{8}}\Bigg)^{\frac{1}{3}} \times \Bigg[\sqrt[5]{\frac{243}{32}} \times \bigg(\frac{3}{2}\bigg)^2\Bigg]

= \displaystyle{\Bigg(\frac{27}{8}}\Bigg)^{\frac{1}{3}} \times \Bigg[\sqrt[5]{\frac{3 \times 3 \times 3 \times 3 \times 3  }{2 \times 2 \times 2 \times 2 \times 2}} \times \bigg(\frac{3}{2}\bigg)^2\Bigg]

= \displaystyle{\Bigg(\frac{27}{8}}\Bigg)^{\frac{1}{3}} \times \Bigg[\frac{3}{2} \times \bigg(\frac{3}{2}\bigg)^2\Bigg]

= \displaystyle{\Bigg(\frac{27}{8}}\Bigg)^{\frac{1}{3}} \times \bigg(\frac{3}{2}\bigg)^3

= \displaystyle \sqrt[3]{\frac{27}{8}} \times \bigg(\frac{3}{2}\bigg)^3

 = \displaystyle \sqrt[3]{\frac{3 \times 3 \times 3}{2 \times 2 \times 2 }} \times \bigg(\frac{3}{2}\bigg)^3

= \displaystyle \bigg(\frac{3}{2}\bigg)^4

= \dfrac{3\times 3\times 3 \times 3}{2 \times 2 \times 2 \times 2}

= \dfrac{81}{16}

Answered by Anonymous
8

Answer:

Question :

\sf{:\implies{\bigg\lgroup \dfrac{27}{8} \bigg\rgroup^{\frac{1}{3}} \times \Bigg[\bigg\lgroup \dfrac{243}{32} \bigg\rgroup^{\frac{1}{5}} \div \bigg\lgroup\dfrac{2}{3} \bigg\rgroup^{2}\Bigg]}}

\begin{gathered}\end{gathered}

Solution :

 \begin{gathered}\sf{:\implies{\bigg\lgroup \dfrac{27}{8} \bigg\rgroup^{\frac{1}{3}} \times \Bigg[\bigg\lgroup \dfrac{243}{32} \bigg\rgroup^{\frac{1}{5}} \div \bigg\lgroup\dfrac{2}{3} \bigg\rgroup^{2}\Bigg]}} \\ \end{gathered}

We can write as :

  • 27 = 3 × 3 × 3 = 3³
  • 8 = 2 × 2 × 2 = 2³
  • 243 = 3 × 3 × 3 × 3 × 3 = 3⁵
  • 32 = 2 × 2 × 2 ×2 × 2 = 2⁵

 \begin{gathered}\sf{:\implies{\bigg\lgroup \dfrac{3 \times 3 \times 3}{2 \times 2 \times 2} \bigg\rgroup^{\frac{1}{3}} \times \Bigg[\bigg\lgroup \dfrac{3 \times 3 \times 3 \times 3 \times 3}{2 \times 2 \times 2 \times 2 \times 2} \bigg\rgroup^{\frac{1}{5}} \div \bigg\lgroup\dfrac{2}{3} \bigg\rgroup^{2}\Bigg]}} \\ \end{gathered}

 \begin{gathered}\sf{:\implies{\bigg\lgroup \dfrac{{(3)}^{3}}{{(2)}^{3}} \bigg\rgroup^{\frac{1}{3}} \times \Bigg[\bigg\lgroup \dfrac{({3}^{5})}{{(2)}^{5}} \bigg\rgroup^{\frac{1}{5}} \div \bigg\lgroup\dfrac{2}{3} \bigg\rgroup^{2}\Bigg]}} \\ \end{gathered}

Now, we can write as :

  • (3³/2³) = (3/2)³
  • (3⁵/2⁵) = (3/2)⁵

 \begin{gathered}\sf{:\implies{\bigg\lgroup \bigg(\frac{3}{2} \bigg)^{3}  \bigg\rgroup^{\frac{1}{3}} \times \Bigg[\bigg\lgroup \bigg(\frac{3}{2} \bigg)^{5}   \bigg\rgroup^{\frac{1}{5}} \div \bigg\lgroup\dfrac{2}{3} \bigg\rgroup^{2}\Bigg]}} \\ \end{gathered}

Now using law of exponent :

  • {\rm{({a}^{m})^{n} = {a}^{mn}}}

 \begin{gathered}\sf{:\implies{\bigg\lgroup \frac{3}{2} \bigg\rgroup^{3 \times \frac{1}{3}} \times \Bigg[\bigg\lgroup\frac{3}{2}  \bigg\rgroup^{5 \times \frac{1}{5}} \div \bigg\lgroup\dfrac{2}{3} \bigg\rgroup^{2}\Bigg]}} \\ \end{gathered}

 \begin{gathered}\sf{:\implies{\bigg\lgroup \frac{3}{2} \bigg\rgroup^{\frac{3}{3}} \times \Bigg[\bigg\lgroup\frac{3}{2}  \bigg\rgroup^{\frac{5}{5}} \div \bigg\lgroup\dfrac{2}{3} \bigg\rgroup^{2}\Bigg]}} \\ \end{gathered}

 \begin{gathered}\sf{:\implies{\bigg\lgroup \frac{3}{2} \bigg\rgroup^{1} \times \Bigg[\bigg\lgroup\frac{3}{2}  \bigg\rgroup^{1} \div \bigg\lgroup\dfrac{2}{3} \bigg\rgroup^{2}\Bigg]}} \\ \end{gathered}

 \begin{gathered}\sf{:\implies{\bigg\lgroup \frac{3}{2} \bigg\rgroup^{1} \times \Bigg[\bigg\lgroup\frac{3}{2}  \bigg\rgroup^{1} \times  \bigg\lgroup\dfrac{3}{2} \bigg\rgroup^{2}\Bigg]}} \\ \end{gathered}

 \begin{gathered}\sf{:\implies{\bigg\lgroup \frac{3}{2} \bigg\rgroup^{1} \times \Bigg[\bigg\lgroup\frac{3}{2}  \bigg\rgroup^{1} \times  \bigg\lgroup\dfrac{3}{2} \times  \dfrac{3}{2} \bigg\rgroup\Bigg]}} \\ \end{gathered}

 \begin{gathered}\sf{:\implies{\bigg\lgroup \dfrac{3}{2} \bigg\rgroup^{1} \times \Bigg[\bigg\lgroup\dfrac{3}{2}  \bigg\rgroup^{1} \times  \bigg\lgroup\dfrac{3 \times 3}{2 \times 2}\bigg\rgroup\Bigg]}} \\ \end{gathered}

 \begin{gathered}\sf{:\implies{\bigg\lgroup \dfrac{3}{2} \bigg\rgroup^{1} \times \Bigg[\bigg\lgroup\dfrac{3}{2}  \bigg\rgroup^{1} \times  \bigg\lgroup\dfrac{9}{4}\bigg\rgroup\Bigg]}} \\ \end{gathered}

 \begin{gathered}\sf{:\implies{\bigg\lgroup \frac{3}{2} \bigg\rgroup\times \Bigg[\bigg\lgroup\frac{3}{2}  \bigg\rgroup \times  \bigg\lgroup\dfrac{9}{4}\bigg\rgroup\Bigg]}} \\ \end{gathered}

 \begin{gathered}\sf{:\implies{\bigg\lgroup \dfrac{3}{2} \bigg\rgroup\times \Bigg[ \:  \: \dfrac{3}{2}   \times \dfrac{9}{4} \:  \: \Bigg]}} \\ \end{gathered}

 \begin{gathered}\sf{:\implies{\bigg\lgroup \dfrac{3}{2} \bigg\rgroup\times \Bigg[ \:  \: \dfrac{3 \times 9}{2 \times 4} \:  \: \Bigg]}} \\ \end{gathered}

 \begin{gathered}\sf{:\implies{\bigg\lgroup \dfrac{3}{2} \bigg\rgroup\times \Bigg[ \:  \: \dfrac{27}{8} \:  \: \Bigg]}} \\ \end{gathered}

 \begin{gathered}\sf{ : \implies{\dfrac{3}{2} \times \dfrac{27}{8}}} \\ \end{gathered}

 \begin{gathered}\sf{ : \implies{\dfrac{3 \times 27}{2 \times 8}}} \\ \end{gathered}

 \begin{gathered}\sf{ : \implies{\dfrac{81}{16}}} \\ \end{gathered}

\bigstar \:\red{\underline{\boxed{\sf{Answer = \dfrac{81}{16}}}}}

Hence, the answer is 81/16.

\begin{gathered}\end{gathered}

Learn More :

☼ EXPONENT :

↝ The exponent of a number says how many times to use the number in a multiplication.

☼ LAW OF EXPONENT :

The important laws of exponents are given below:

  • ↠ {\rm{{a}^{m} \times {a}^{n} = {a}^{m + n}}}
  • ↠ {\rm{{a}^{m}/{a}^{n} = {a}^{m - n}}}
  • ↠ {\rm{({a}^{m})^{n} = {a}^{mn}}}
  • ↠ {\rm{{a}^{n}/{b}^{n} = ({a/b})^{n} }}
  • ↠ {\rm{{a}^{0} = 1}}
  • ↠ {\rm{{a}^{ - m} = {1/a}^{m}}}
  • ↠ {\rm{{a}^{\frac{1}{n} } = \sqrt[n]{a}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions