simplify as soon as possible.... pls
Attachments:
Answers
Answered by
1
Answer:
Step-by-step explanation:
x + y + z = 0
x³ + y³ + z³ = 3xyz
Let x = a² - b² ,
y = b² - c²
z = c² - a²
x + y + z = a² - b² + b² - c² + c² - a²
= 0
so,
( a² - b² )³ + ( b² - c² )³ + ( c² - a² )³
= 3( a² - b² )( b² - c² )( c² - a² ) ---( 1 )
Similarly ,
( a - b )³ + ( b - c )³ + ( c - a )³
= 3( a - b )( b - c )( c - a ) ----( 2 )
( 1 ) divide ( 2 )
=[3(a²-b²)(b²-c²)(c²-a²)]/[3(a-b)(b-c)(c-a)]
= ( a + b )( b + c )( c + a )
Answered by
1
(A+B) (B+C) (C+A)
follow me yrr......
Similar questions