Math, asked by sreejithm, 1 year ago

simplify by factorisation method

Attachments:

Answers

Answered by sahuraj457
1

 \frac{10 + x \sqrt{5} -  {x}^{2}  }{5 -  {x}^{2} }  \\  \frac{ {x}^{2}  - x \sqrt{5}  - 10}{ {x}^{2} - 5 }  \\   \frac{ {x}^{2} - 2 \sqrt{5} x +  \sqrt{5} x - 10 }{ {x}^{2} - 5 }  \\  \frac{x(x - 2 \sqrt{5} ) +  \sqrt{5}(x - 2 \sqrt{5} ) }{(x +  \sqrt{5} )(x -  \sqrt{5}) }  \\  \frac{(x +  \sqrt{5})(x - 2 \sqrt{5} ) }{(x  +  \sqrt{5} )(x -  \sqrt{5}) }  \\  \frac{x - 2 \sqrt{5} }{x - 5}
please follow me
Answered by ScannerGoogle
1
Numerator =
 - ( {x}^{2} - x \sqrt{5}    -  10) \\  =  >  - ( {x}^{2}  - 2 \sqrt{5} x +  \sqrt{5x}  - 10) \\  =  >  - (x(x - 2 \sqrt{5} ) +  \sqrt{5} (x - 2 \sqrt{5} )) \\   =  >  - (x + \sqrt{5}  )(x - 2 \sqrt{5} )
denominator =
 =  >  - ( {x}^{2}  - 5) \\  =  >  - (x +  \sqrt{5} )(x -  \sqrt{5} )
Numerator divided by denominator =
x - 2 \sqrt{5}  \div x -  \sqrt{5}
after rationalisation get the answer....

HOPE THIS WOULD HELP YOU
Similar questions