Simplify by rationalising the denomination of 7√3-5√2/√48+√18
Answers
Answered by
15
Step-by-step explanation:
Given \: \frac{(7\sqrt{3}-5\sqrt{2})}{(\sqrt{48}+\sqrt{18})}Given(48+18)(73−52)
=\frac{(7\sqrt{3}-5\sqrt{2})}{(\sqrt{4\times 4\times 3}+\sqrt{3\times 3\times 2})}(4×4×3+3×3×2)(73−52)
=\frac{(7\sqrt{3}-5\sqrt{2})}{(4\sqrt{3}+3\sqrt{2})}(43+32)(73−52)
/* Multiply numerator and denominator by (4\sqrt{3}-3\sqrt{2})(43−32) , we get
=\frac{(7\sqrt{3}-5\sqrt{2})(4\sqrt{3}-3\sqrt{2})}{(4\sqrt{3}+3\sqrt{2})(4\sqrt{3}-3\sqrt{2})}(43+32)(43−32)(73−52)(43−32)
=\frac{28\times 3-21\sqrt{6}-20\sqrt{6}+15\times 2}{(4\sqrt{3})^{2}-(3\sqrt{2})^{2}}(43)2−(32)228×3−216−206+15×2
=\frac{84-41\sqrt{6}+30}{48-18}48−1884−416+30
=\frac{114-41\sqrt{6}}{30}30114−416
/* Denominator rationalised .
Therefore,
\begin{gathered} \frac{(7\sqrt{3}-5\sqrt{2})}{(\sqrt{48}+\sqrt{18})}\\=\frac{114-41\sqrt{6}}{30}\end{gathered}(48+18)(73−52)=30114−416
•••♪
᪥A Small Help To u༒
Answered by
12
Answer:
hope it helps you mark as brainliest follow me
Attachments:
Similar questions