Math, asked by killordiecpm47, 2 months ago

Simplify by rationalising the denominator 1/√11+√7-√8​

Answers

Answered by ilmashaikh861
0

Step-by-step explanation:

\frac{1}{60}(6\sqrt{5}+5\sqrt{6}+\sqrt{330})

60

1

(6

5

+5

6

+

330

)

Step-by-step explanation:

Here, the given expression is,

\frac{1}{\sqrt{6}+\sqrt{5}-\sqrt{11}}

6

+

5

11

1

For rationalizing the denominator, multiply both numerator and denominator by √6 + √5 + √11,

=\frac{1}{\sqrt{6}+\sqrt{5}-\sqrt{11}}\times \frac{\sqrt{6}+\sqrt{5}+\sqrt{11}}{\sqrt{6}+\sqrt{5}+\sqrt{11}}=

6

+

5

11

1

×

6

+

5

+

11

6

+

5

+

11

=\frac{\sqrt{6}+\sqrt{5}+\sqrt{11}}{(\sqrt{6}+\sqrt{5})^2-(\sqrt{11})^2}=

(

6

+

5

)

2

−(

11

)

2

6

+

5

+

11

=\frac{\sqrt{6}+\sqrt{5}+\sqrt{11}}{6+5+2\times\sqrt{6}\times \sqrt{5}-11}=

6+5+2×

6

×

5

−11

6

+

5

+

11

=\frac{\sqrt{6}+\sqrt{5}+\sqrt{11}}{2\sqrt{30}}=

2

30

6

+

5

+

11

Again for rationalizing the denominator, multiply both numerator and denominator by √30,

=\frac{\sqrt{180}+\sqrt{150}+\sqrt{330}}{60}=

60

180

+

150

+

330

=\frac{6\sqrt{5}+5\sqrt{6}+\sqrt{330}}{60}=

60

6

5

+5

6

+

330

=\frac{1}{60}(6\sqrt{5}+5\sqrt{6}+\sqrt{330})=

60

1

(6

5

+5

6

+

330

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:\dfrac{1}{ \sqrt{11} +  \sqrt{7} -  \sqrt{8}}

\rm \:  \:  =  \: \dfrac{1}{ (\sqrt{11} +  \sqrt{7}) -  \sqrt{8}}

☆ On rationalizing the denominator, we get

\rm \:  \:  =  \: \dfrac{1}{ (\sqrt{11} +  \sqrt{7}) -  \sqrt{8}}  \times \dfrac{ \sqrt{11}  +  \sqrt{7}  +  \sqrt{8} }{( \sqrt{11} +  \sqrt{7}) +  \sqrt{8}}

 \rm \:  \:  =  \: \dfrac{ \sqrt{11}  +  \sqrt{7}  +  \sqrt{8} }{ {( \sqrt{11}  +  \sqrt{7})}^{2}  -  {( \sqrt{8})}^{2} }

 \:  \:  \:  \:  \:  \:  \:  \: \green{\bigg \{ \bf \because \: (x + y)(x - y) =  {x}^{2}  -  {y}^{2} \bigg \}}

 \rm \:  \:  =  \: \dfrac{ \sqrt{11} +  \sqrt{7} +  \sqrt{8} }{(11 + 7 + 2 \sqrt{77})- 8 }

 \:  \:  \:  \:  \:  \:  \:  \:  \: \pink{\bigg \{ \because \:  {(x + y)}^{2} =  {x}^{2}  +  {y}^{2} + 2xy\bigg \}}

 \rm \:  \:  =  \: \dfrac{ \sqrt{11} +  \sqrt{7} +  \sqrt{8} }{18 + 2 \sqrt{77}- 8 }

 \rm \:  \:  =  \: \dfrac{ \sqrt{11} +  \sqrt{7} +  \sqrt{8} }{10 + 2 \sqrt{77}}

 \rm \:  \:  =  \: \dfrac{ \sqrt{11} +  \sqrt{7} +  \sqrt{8} }{2(5 +  \sqrt{77})}

 \rm \:  \:  =  \: \dfrac{ \sqrt{11} +  \sqrt{7} +  \sqrt{8} }{2(5 +  \sqrt{77})}  \times \dfrac{5 -  \sqrt{77} }{5 -  \sqrt{77} }

 \rm \:  \:  =  \: \dfrac{5 \sqrt{11} +5 \sqrt{7} + 5 \sqrt{8} - 11 \sqrt{7}  - 7 \sqrt{11}  - 2 \sqrt{154} }{2\bigg( {5}^{2} -  {( \sqrt{77} )}^{2}  \bigg) }

 \:  \:  \:  \:  \:  \:  \:  \: \purple{\bigg \{ \bf \because \: (x + y)(x - y) =  {x}^{2}  -  {y}^{2} \bigg \}}

 \rm \:  \:  =  \: \dfrac{10 \sqrt{2} - 2 \sqrt{154} - 6 \sqrt{7} - 2 \sqrt{11})}{2(25 - 77)}

 \rm \:  \:  =  \: \dfrac{2(5\sqrt{2} -  \sqrt{154} - 3 \sqrt{7} -  \sqrt{11}) }{2(25 - 77)}

 \rm \:  \:  =  \: \dfrac{(5\sqrt{2} -  \sqrt{154} - 3 \sqrt{7} -  \sqrt{11}) }{ - 52}

 \rm \:  \:  =  \: \dfrac{( - 5\sqrt{2} +  \sqrt{154}  + 3 \sqrt{7}  + \sqrt{11}) }{ 52}

 \rm \:  \:  =  \: \dfrac{ \sqrt{154} +  \sqrt{11} + 3 \sqrt{7} - 5 \sqrt{2} }{52}

Additional Information :-

More Identities to know:

  • (a + b)² = a² + 2ab + b²

  • (a - b)² = a² - 2ab + b²

  • a² - b² = (a + b)(a - b)

  • (a + b)² = (a - b)² + 4ab

  • (a - b)² = (a + b)² - 4ab

  • (a + b)² + (a - b)² = 2(a² + b²)

  • (a + b)³ = a³ + b³ + 3ab(a + b)

  • (a - b)³ = a³ - b³ - 3ab(a - b)

Similar questions