Math, asked by dheembhoombha, 3 months ago

Simplify by rationalising the denominator
✓3+✓2 by ✓3-✓2 - ✓3-✓2 by ✓3+✓2​

Answers

Answered by vipashyana1
0

\mathfrak{\huge{Answer:-}} \\  \bold{\frac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3} -  \sqrt{2}  }  -  \frac{ \sqrt{3} -  \sqrt{2}  }{ \sqrt{3} +  \sqrt{2}  } } \\  =  \frac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3} -  \sqrt{2}  }  \times  \frac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3} +  \sqrt{2} }  -  \frac{ \sqrt{3} -  \sqrt{2}  }{ \sqrt{3} +  \sqrt{2}  }  \times  \frac{ \sqrt{3} -  \sqrt{2}  }{ \sqrt{3} -  \sqrt{2}  }  \\  =  \frac{( \sqrt{3}  +  \sqrt{2} )( \sqrt{3} +  \sqrt{2} ) }{( \sqrt{3}  -  \sqrt{2})( \sqrt{3}  +  \sqrt{2})  }  -  \frac{( \sqrt{3}  -  \sqrt{2})( \sqrt{3}  +  \sqrt{2})}{( \sqrt{3} +  \sqrt{2} )( \sqrt{3}   -  \sqrt{2}) }  \\  =  \frac{ {( \sqrt{3}  +  \sqrt{2}) }^{2} }{ {( \sqrt{3} )}^{2} -  {( \sqrt{2} )}^{2}  }  -  \frac{ {( \sqrt{3}  -  \sqrt{2} )}^{2} }{ {( \sqrt{3} )}^{2}  -  {( \sqrt{2}) }^{2} }  \\  =  \frac{3 + 2 + 2 \sqrt{6} }{3 - 2}  -  \frac{3 + 2 - 2 \sqrt{6} }{3 - 2}  \\  =  \frac{5 + 2 \sqrt{6} }{1} -   \frac{5 -  2 \sqrt{6} }{1}  \\  = (5 + 2 \sqrt{6} ) - (5 - 2 \sqrt{6} ) \\  = 5 + 2 \sqrt{6}  - 5 + 2 \sqrt{6}  \\  = 5 - 5 + 2 \sqrt{6}  + 2 \sqrt{6}  \\  = 4 \sqrt{6}  \\ \boxed{\boxed{\large{\bold{ \frac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3} -  \sqrt{2}} -  \frac{ \sqrt{3}  -  \sqrt{2} }{ \sqrt{3}  +  \sqrt{2} }  = 4 \sqrt{6}  }}}}

Similar questions